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A String-theory Calculation of Hawking Radiation 
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ABSTRACT 

 A study of black hole thermodynamics show that black holes are radiating. String theory, the promising 

theory of quantum gravity, should give us how the black holes radiate. We study D1-D5-brane model which closed 

strings are caused by scattering of open strings living on brane. The decay rate of D1-D5-brane is found to agree with 

classical Hawking radiation of corresponding 5-dimensional black hole in leading order of low energy approximation.  

 

บทคดัย่อ 

จากการศึกษาอุณหพลศาสตร์ของหลุมดาํนั้นพบว่าหลุมดาํสามารถแผ่รังสีออกมาได ้ทฤษฏีสตริงซ่ึงเป็น

ทฤษฏีท่ีเช่ือวา่สามารถอธิบายแรงโน้มถ่วงในเชิงควอนตมัไดค้วรจะสามารถให้คาํอธิบายเก่ียวกบัหลุมดาํซ่ึงสามารถ

อธิบายปัญหาในขา้งตน้ได ้เราจะทาํการศึกษาแบบจาํลองหลุมดาํแบบ D1D5 ในทฤษฏีสตริง โดยในแบบจาํลองจะมี

การแผรั่งสีจากสถานะกระตุน้ของเบรน ท่ีเกิดจากสตริงแบบปลายเปิดบนเบรนเกิดการชนกนัและปลดปล่อยสตริงแบบ

วงปิดออกมานอกเบรน ซ่ึงอตัราการปลดปล่อยรังสีท่ีไดจ้ากการแบบจาํลองน้ีให้ผลท่ีสอดคลอ้งกบัการแผ่รังสีฮอวคิ์ง
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1.  Introduction 

 Black holes in the classical theory cannot 

emit particles. The quantum mechanical effects, 

however, cause black holes to radiate particles as a 

thermal black body radiation with temperature 

π
κ
2

=T . This is identical with black hole mechanics 

discovered by James Bardeen, Brandon Carter and 

Stephen Hawking (Hawking, 1975; Bardeen, Carter 

and Hawking, 1973). 

 Recent studies of black hole thermodynamics 

have been done by using D-branes as a model 

building. There are some configurations which is BPS 

saturated brane agree with extremal black hole (Das 

and Mathur, 1996). This implies that there must exist 

string states correspond with Hawking-Beckenstein 

entropy. In the other words, there are some black 

branes with thermodynamical properties agree with 

black hole mechanics. 

In this paper, we review some calculations 

and configurations to show the coinciding between D-

brane decay and classical black hole radiation. 

 
2.  Black Hole Classical Absorption Rate of Low 

Energy Scalars 

 In this section, we compute the black hole 

absorption probability of low energy scalars by using 

quantum field theory in curved spacetime. The basic 

idea of semiclassical principle is to treat the matter 

fields quantum mechanically and the gravity as a 

background. For our analysis, we will focus on 

massless scalar field φ  that satisfy the wave equation, 

0,== φφ ba
abg ∇∇W                        (1)  

where abg  is the metric inverse from line element 
ba

ab dxdxgds =2  and we work in units with 

1=== hcG  as same as the most papers. As a 

scalar field could be a quantum operator, it must obey 

the canonical equal time commutation relations, 

)(=)],(),,([ '' tt xxxx −δφφ  . This leads us to 

write a field in a form of mode expansion, 

( ),= *†
ωωωωωφ fafad +∫                    (2) 

A set },{ *
ωω ff  is a complete orthonormal set of 

basis functions. The standard choice of basis functions 

for scalar field is 

,
2
1= )( xk⋅−− tief ω

ω ω
                        (3) 

where kk ⋅+=ω . The canonical commutation 

relations for the scalar field imply commutation 

relations for mode operators ωa , †
ωa , 

].,[=0=],[),(=],[ †††
''

'
' aaaaaa

ωωωωωω ωωδ −

 

                                                                        (4) 

Usually, the vacuum state is defined as the state with 

the lowest possible energy state. On the other hand, it 

is a state in the absence of particles which is 

annihilated by all the annihilation operators ωa ,   

 0=0
a

aω                             (5) 

for all 0>ω . The Fock space of state is constructed 

by applying creation operators to a vacuum state, for 

instant, the state 
a

na 0)( †
ω  contains n  particles 

with energy ω . By defining a number operator 

ωωω aaN †=  for each mode, so that 

naNa
a

nn
a =0)()(0 †

ωωω  

One can define a second expansion on another 

complete set of basis },,{ *
'' pp

ωω
 

( ),= *†
''''

' pbpbd
ωωωω

ωφ +∫               (6) 

where mode coefficients 'b
ω

, †
'b

ω
 also satisfy 

commutation relations. The annihilation operators 'b
ω

 

define another vacuum state, 0=0
b'b

ω
, for all 

0>'ω .The number operator for mode in b -states is 
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''' bbN
ωωω

†= . The creation operators 'b
ω

 also span 

another Fock space by applying to 
b

0 . 

 The scalar field could be expanded with 

difference sets of basis function. However, one may find 

that the basis functions ωf  and 'p
ω

 are related to each 

other through the linear transformation, so-called 

Bogoliubov transformation, 

)(= *
ωωωωωωω

βαω ffdp ''' +∫  

).(= **
''''

' ppdf
ωωωωωωω βαω −∫        (7) 

In order to satisfy the orthonormality of the basis 

functions, Bogoliubov coefficients 'ωω
α , 'ωω

β  have to 

follow the equation 

).(=)(
22

'
''

'd ωωδβαω
ωωωω

−−∫        (8) 

Those above lead us to the relation between mode 

coefficients, 

).(= †**
ωωωωωωω

βαω aadb ''' −∫                (9) 

So we can now evaluate the expression for 'N
ω

 in the 

a -vacuum state, 

.=00=00
2

†

ωωωωω
βω 'a''aa'a dbbN ∫

                                                            

(10) 

For the simplicity of further calculation, we consider 1+1 

dimensional Schwarzschild metric which is spherically 

symmetric and stationary black hole solution to Einstein 

equation. 

.21)(,)()(= 2122

r
MrVdrrVdtrVds −≡− −

           

(11) 

The horizon in this coordinates is at Mr 2= . One 

might find it is convenient to introduce the tortoise 

coordinates which bring the metric to a conformally flat 

form, 

][21= 2*22 drdt
r
Mds −






 −  

drrVdr 1* )( −≡  

.1
2

ln22=* 





 −+−

M
rMMrr          (12) 

The coordinates ),( *rt  are defined only for 

Mr 2>  and asymptotically flat when ∞→+r . 

In the lightcone coordinates *rtu −≡  and 
*rtv +≡ , the metric becomes 

.21=2 dudv
r
Mds 






 −                   (13) 

In contrast to the Schwarzschild metric 

which has a coordinate singularity at Mr 2= , an 

observer freely falling into the black hole would see a 

finite curved space while crossing the horizon. We 

need a suitable coordinate system which is Kruskal 

coordinates, 

.
4

exp4=,
4

exp4= 













−−

M
vMv

M
uMu

 (14) 

The metric (13) becomes 

.21exp2=2 vdud
r
M

r
Mds 






 −       (15) 

With Mr 2= , the metric (15) becomes 

vdudds =2  which is same as Minkowski metric. 

Hence the freely falling observer crosses the horizon 

line without seeing singularity. 
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 In the calculation, we use the fact that 

particle definitions are different among observers. We 

define a vacuum for observers in free-falling, 
K

0  

and a vacuum for observers at constant r , 
T

0 . By 

comparing the complete basis functions with different 

coordinates },{ vu  and },{ vu , the number of 

particle created by black hole is 

(0).
1

1==00 4

2
δβω ωπωωω −∫ M'

'
KK e

dN  

(16) 

The number density ωn  which (0)= δωω nN 〉〈  is 

in the form of Bose-Einstein distribution 

1

1=
−T

EE

e
n , we found that the black hole has a 

thermal blackbody radiation with the temperature 

M
T

π4
1= . For other black holes the temperature is 

π
κ
2

=T  where κ  is surface gravity of the black 

hole. The temperature is known as Hawking 

temperature. 

 

3.  5-dimensional Reissner-Nordstrom Black Hole 

from Supergravity Solution 

For classical radiation of black hole with 

geometry corresponding to the charges carried by D-

branes, we use 5-dimensional extremal black hole 

metric from SUGRA solution, 

2
3

23
1

23
1

23
2

2 )()()(= Ω++−
−

drrfdrrfdtrfds  

(17) 

where ).)(1)(1(1=)( 2
3

2
2

2
1

r
Q

r
Q

r
Qrf +++      

(18) 

Consider a spherically symmetric massless 

minimally coupled scalar wave function with higher 

angular momentum component (which is not absorbed 

in low ω  limit), 

.)(=),( tierRtr ωφ −                   (19) 

The wave equation is now reduced to 

0=)(
4
3)( 2

2
2

2

r
r

rf
dr
d ψω 








−+      (20) 

where )(=)( 3/2 rRrrψ . 

 The n-dimensional wave function with 

2>n  can be decomposed into spherical harmonic 

wave function. In this case, we consider spherically 

symmetric mode, so the wave equation becomes 

)()(=)( 2)((2))( rr nn φφ −+WWW                   (21) 

)()()(= 2)(2
2

2

rrVrf
dr
d n φω 








++ −             (22) 

which )(rV  is considered as a barrier-like potential 

from spacetime geometry. Therefore a particle 

escaping the black hole needs to tunnel through the 

potential. This decreases the intensity of the wave by 

gray body factor, 1<)(EgbΓ . 

horizonat  createdflux  total
infinityat flux  goingout  total=ωΓ   (23) 

 In order to find a gray body factor, we use 

matching condition method to find a transmission rate 

and use low energy limit, 1<<2ωQ , for 

approximation. 

In the calculation, we match boundaries of the 

solutions across three regions (Das and Mathur, 1996). 

i.) Outer region 1/2>> iQr  In this region we got 

21
r
Qf +≈  where 321= QQQQ ++  

ii.) Intermediate region 1/2
iQr :  

iii.) Near horizon region 1/2<< iQr  

 By matching these conditions, one must find 

an absorption probability (equivalent to transmission 

probability), 

.
4
1=

2
1=|| 3

321
32

HAQQQA ω
π

πω      (24) 
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Similar to the previous section, number 

density of particle emitted by 5-dimensional black hole 

is in the form of Bose-Einstein distribution but with a 

gray body factor. Therefore a total energy emission 

rate in energy range ),( ωωω d+  should be,   

.
12

=)(
−

Γ






ωβ
ωω

π
ωω

H
SC e

d
dt

dE
         (25) 

In low energy case, gray body factor is approximately 

to the absorption probability, )(|=| 2 ωω AΓ . This 

makes our result become 

.
18

=)( 4

2 −





ωβ

ωω
π

ω
H

H

SC e
dA

dt
dE

        (26) 

 

4 . String Amplitude 

In this section we calculate an emission rate 

of low energy quanta from a slightly nonextremal state 

with configuration that 5-brane wound on 5T  and D-

string wound on one of the 5-brane direction. We 

interested in the case that two D-strings annihilate into 

a graviton. Due to the compactification on 5T , we can 

decompose graviton into scalar, vector and graviton in 

5-dimensional non-compact spacetime. However, D-

string only has a vibration on 5-brane directions. 

Therefore, the only particle emitted is 5-dimensional 

scalar. 

The 4-point correlation function of D-brane 

oscillation is given by (Hashimoto and Klebanov, 

1996) 

>),(2),(2
),(2),(2<

),;,;,;,(

44143313

22021101

4321

44332211

xkVxkV
xkVxkV

V
dxdxdxdx

kkkkA

CKG

−− ⋅⋅
⋅⋅

∫

ζζ
ζζ

ζζζζ :

(27)  

where -1 and 0 super ghost picture vertex operator are   

)(=),2( 2
1 zeekzV Xki ⋅−
−

µφµ ψ        (28) 

).()2(=),2( 2
0 zekiXkzV Xik ⋅⋅+∂ µµµ ψψ

   (29) 

Note that we work in unit 2='α  for type I and type 

II string. To calculate the amplitude, we use 

contraction from Green function 

)(>=)()(< wzlnwXzX −− µννµ η     (30) 

wz
wz

−
−

µν
νµ ηψψ >=)()(<                   (31) 

)(>=)()(< wzlnwz −−φφ            (32) 

The amplitude of 4-point correlation function of type I 

theory is 

),;,;,;,(
)44(1

)(4)(4=

44332211

4121

4121

kkkkK
kkkk

kkkkA

ζζζζ
⋅+⋅+Γ
⋅Γ⋅Γ

         (33) 

where K  is kinematic function 

(1432)}{(1234)
(1324)}{(1234)

)

(4
4=

411342

322431

311432

42234121

43214232

→+
→+

⋅⋅⋅+
⋅⋅⋅+
⋅⋅⋅+

⋅⋅⋅⋅+
⋅⋅⋅⋅

ζζζζ
ζζζζ
ζζζζ

ζζζζ
ζζζζ

kk
kk
kk

kkkk
kkkkK

     (34) 

For four world volume photon, we let lζ  be in the 

world volume directions. The kinematic function is the 

same as above. For our calculation, we need scalar 

scattering, so lζ  must be in the transverse directions, 

0=ml k⋅ζ . This makes the polarization dependent 

kinematic function become 

.4
4

4=

32414234

42314332

43214232

ζζζζ
ζζζζ

ζζζζ

⋅⋅⋅⋅+
⋅⋅⋅⋅+

⋅⋅⋅⋅

kkkk
kkkk

kkkkK
         (35) 

 For a case that two open strings scatter into 

one closed string, graviton, we restrict the momenta 

qp,  in NS sector for open string state and 

momentum k  for closed string state. Only momenta 

parallel to brane are conserved, 0=Pkqp ++ . 

From the conservation of longitudinal momenta, the 
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only one kinematic invariant variable is 

qpkqkpt ⋅−⋅⋅ 2=2=2= . The leading order 

of amplitude is 2 operators on the boundary and 1 

operator on bulk, 

>),()()(<= 3332211
3

2
21 zzVzVzV

V
zddzdzA

CKG
∫

(36) 

where 

),(=)( 10
1

11 pzVzV µ
µξ                          (37) 

),(=)( 20
2

22 qzVzV ν
νξ                           (38) 

).,(~),(=),( 3131333 kzVkzVzzV λσ
σλε −−      (39) 

Note that λ
1

~
−V  is an antiholomorphic operator of λ

1−V .   

 We can represent antiholomorphic fields in 

term of holomorphic fields. 

)()(~
),()(~
),()(~

zz
zDz
zXDzX

φφ
ψψ νµ

ν
µ

νµ
ν

µ

→
→
→

                (40) 

µ
νD  is a diagonal matrix which first 1+p  entries 

(longitudinal directions) are equal to 1 and the left 

p−9  entries (transverse directions) are equal to -1. 

Therefore the 3-point function amplitude is 

.>),(),(
),2(),2(<

=

4131

2010

213321

kDzVkzV
qzVpzV

D
V

zddzdzdzA
CKG

⋅−−

∫

ησ

νµ

λ
ησλνµ εξξ

      (41) 

We can also write this amplitude as the same with the 

4-point correlation function we calculated before by 

changing some variables, 

432211

43

21

22
2222

ζζεζξζξ ⊗→⋅→→
→⋅→
→→

D
kqDkk
kqkp

(42) 

 For low energy and transverse polarization, 

we interest decay rate at only specific polarization, 

1=67ε , and outgoing graviton has no momentum in 

string direction, 0=1
Pk , or 11 = qp − .   

211100 ||2== pqpqpqp −⋅           (43) 

 For low graviton energy, 1<<t , the 

amplitude is 

ji
ijt

ts
tsA 21

2

)(1
)()( ξξε

++Γ
ΓΓ:  

ji
ij

ji
ij tt

t
t

21212)(1
)2(1 ξξεξξε →

−Γ
−Γ:               (44) 

where uts ,,  are Mandelstam variables. 

qpkkkks ⋅⋅⋅ 4=4=4= 4321            (45) 

kpkkkkt ⋅⋅⋅ 2=4=4= 4231            (46) 

kqkkkku ⋅⋅⋅ 2=4=4= 3241            (47) 

This amplitude coincides with the amplitude obtained 

from graviton coupled term, 

ij
jip Gxd φφ ∂∂+∫ 1                     (48) 

, in the DBI action (Das and Mathur, 1996) 

)()()([= )(2 xFxBxGdetedTS mnmnmn
x

BI ++−∫ φξ

(49) 
νµ

µν XXxGG nm
s

mn ∂∂)(= )(                   (50) 
νµ

µν XXxBB nmmn ∂∂)(=                   (51) 

 We can read out an amplitude of the lowest 

order interaction between metric fluctuation which 2 

open strings scatter into 1 purely transverse graviton, 

ji
ijij

ji
ij XXhXXG α

α
α

α κδ ∂∂+∂∂ )2(
2
1=

2
1

(52) 

One must find an amplitude from the interaction term 

with specific polarization 67h    

6767
76

67 2=;2 hhXXh ∂∂κ        (53) 

 In the calculation, we use the configuration 

that 5D-brane wrap around 5T  in 

)( 98765 xxxxx −−−−  directions and D-string 

wrap around 5X  (which has radius R ) 1Q  times 

with radius of 4T  much smaller than R . Polarization 

of open strings are in others of 5-brane directions or 

9)87(6 −−−  plane. 
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The brane decay rate is given by 

4

4
4

4000

2

111

000

22
5

)(2
][||)(

)(
4

)(2=),,(

π
δ

δπκ

dV
Vkqp

Akqp

kqp
L

kqp

D−+

−+Γ
(54) 

where 
4

2
2
5 ~2

=
VRπ

κκ . 4V  is the volume of spatial 

noncompact directions and 4
~V  is the volume of 

compact directions. 

 In order to find a total brane decay rate at a 

given spectrum, we integrate over momenta of open 

strings with bosonic string distribution for brane 

thermodynamics. 

),(),(),,(
22

=)( 1010
11 ppqqkqpLdqLdpk ρρ

ππ
ΓΓ ∫∫

∞

∞−

∞

∞−

(55) 

For low energy limit, the decay rate is 

.
1

1][
16

)(
0

4
4 −

≈Γ kH

H

e
kdAk βπ

          (56) 

Finally, we obtain total energy emission,   

18
=)(

0

0
4
0

2 −kH

H

e
dkkA

dt
kdE

βπ
                (57) 

where 
H

H T
1=β , HT is the effective temperature of 

the system which depends on surface gravity. It is the 

same as the temperature from semiclassical method.  

 

5.  Conclusions 

 In low energy emission, black holes have a 

thermal radiation of a scalar particle. Photon, fermion 

and graviton are vanished in the lowest order of 

calculation. The result shows that energy emission rate 

calculated from D1D5 system is coincided with the 

result from classical result. This makes D-brane 

system a key to study black hole in string theory. 
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