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Stability Analysis of an SVIR Epidemic Model with Nonlinear Incidence Rate
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ABSTRACT

This paper, an SVIR epidemic model with nonlinear incidence rate is investigated. The stability of the
model depends on the basic reproduction number. The global asymptotically stable of the disease-free is proved by
constructing a Lyapunov function and LaSalle’s invariant set theorem. An unique endemic equilibrium exists and is
locally asymptotically stable whenever R > 1. Numerical simulation is illustrated to support the analytical results

and to study the effect of nonlinear incidence rate on the SVIR model.

U T
NN
a0 &

Y o ° da o wa sy 1 A oy R a
auIvei lddrsraunusiansmsszuia SVIR Nlisasigianmsain liitlhudadu yuadesamves
o 2(3 (Y 1 [ a ci’ 9 - = [ o
uuuSasstivuegnumszaumsanrevedlsn myadwilansu lasgweusuazngufwa hivdsiuvesarsa
I8 lligasiiadesmmisaduiinuantavesgaauganeldaniz 1§ 1sa nazgaaugamoldaniizmsuns
A A da 9 o o A 2 aunmw v Ja o A 99 o
szaldesmmmmzidaduiinuiie R, > 1uenvintauiselduaawadnfiBedyaviie lFaivayn

v da = =2 o wa SN 1 a Y o
waawﬁmmqyguaxﬂﬂmwaﬂszinmmeﬂswqmmﬁiu"lmmmu“lw,mumam SVIR

Key Words: SVIR , Vaccination, Lyapunov function

o o

° Yo ¢ o
AMAINY: LUVIABINITIEUIA SVIR ﬂwﬂmﬂ%uﬁaﬂ%u‘laazwaum\l

*Student, Master of Science, Program in Applied Mathematics, Department of Mathematics, Faculty of Science, King Mongkut’s
University of Technology Thonburi

" Associate Professor, Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi

300



I Tl(ir:ntic:mr:al
Graduate
Research

1. Introduction

Mathematical models in epidemiology or
epidemic model are used to understand epidemiological
phenomena, to predict the infectious disease progress
and to prevent public health for controlling the diseases.
Most epidemic models descend from the classical SIR
(Susceptible-infectious-recovered) model of Kermack
and Mckendric established in 1927 (W.O. Kermarck and
A.G. Mckendrick, 1927). In fact, vaccines are extremely
important and have been proved to be the most effective
and cost-efficient method of preventing infectious
diseases such as measles, polio, diphtheria, tetanus,
pertussis, and tuberculosis. In recent years, many
researchers have discussed the SIR model allowing
vaccination, that is, the SVIR model.

Kribs-Zaleta C.M. and Velasco-Hernandez
J.X. (2000) presented aSVIS epidemic model and
found that this model exhibited the phenomenon of
backward bifurcation. Furthermore, the model is applied
for studying the vaccination of disease pertussis and
tuberculosis. Liu X., Takeuchi Y. and Iwami S. (2008)
established two SVIR model to describe continuous
vaccination strategy and pulse vaccination strategy,
respectively. However, in modeling disease epidemics
take place in ecological system, the incidence rate plays
a key factor in the transmission of infectious diseases. It
has been suggested by several authors that the disease
transmission process may have a nonlinear incidence
rate. This allows one to include behavioral changes and
prevent unbounded contact rates. A particular example
of such an incidence rate is given by S1(1+vI“")S ,
where # >0, v >0and k > 0. This incidence with
V near one, represents saturation or multiple exposures
before infection. van der Driessche P. and Watmough J.
(2000, 2003) introduced this incident into SIS

epidemic model where B >0, v>0and k>0.
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They found that SIS epidemic model with this incidence
rate exhibited backward bifurcation. Alexander M.E.
and Moghadas S.M. (2004) analyzed an SIV model
with a generalized nonlinear incidence rate
BlA+vI"S ,where >0, >0 and 0<q<1.
The results showed that bistability and various
Hopfbifurcation occurred. Jin Y., Wang W. and Xiao S.
(2007) studied the backward bifurcation, the Hopf
bifurcation and Bogdanov-Takens bifurcation by
analyzing a SIRS model with nonlinear incident rate in
the form Al1(1+v1“")S, where 8 >0, v > 0and
k=2. Zhou X. and Cui J. (2011) investigated the
SEIV model with nonlinear incidence rate of the form
Bl1+vI")Swith #>0,v>0and q=2.

The aim of this paper is to investigate the
effect of nonlinear incidence rate SSI(1+vl1), >0
and 0 <V <1 on the dynamic of aSVIR epidemic
model proposed by Liu X., Takeuchi Y. and Iwami S.
(2008). To this end, we consider the following

differential equations

ds
— =u—uS-pSI1+vl)-as,
dt

av
—=aS-pBVI-yV -V,
dt

dl (1
— = BSIA+vl)+ AVl =yl — ul,

dt

dr

—=yl+yl-uR,

dt

where the state variables S, V ,1 and R denote
the densities (or fractions) of susceptible, vaccinated,
infected and recovered individuals, respectively.
Theparameters 4 is the natural birth rate which is
assumed to be equal natural death rate; [ is the
transmission rate; ¢ is the rate at which susceptible
individuals who are moved into the vaccination

process; [ is the possibility of infection with a

disease transmission rate while contracting with
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infected individuals; p is the recovery rate of
infected individuals and y, is the average rate for
individuals to obtain immunity andmove into
recovered population, respectively. It is assumed that
B, is less than S because the vaccinated individuals
may have some partial immunity during the process
or they may recognize the transmission characters of
the disease and hence decrease the effective contacts

with infected individuals.Adding all equations in (1)

gives

dN dS dv dI dR

— =—4—+—+—=pu—-uN 2
d dt dt dt dt

which has the following implication: the three-
dimension simplex

r:{(s,v,|,R)eij :S+V+I+R=1}
is positively invariant. On the simplex I", we have
R(t)=1-5S(t)-V (t)—1(t), thus, the dynamics
of system (1) is studied by analyzing the following

three-dimensional system:

ds
— =y puS—-pSId+vl)—as,
dt

dav
—=aS-pBVl -yV -V,
dt

(3)
di
—=ASI0+v)+ VI =yl —pl,
dt
The dynamical behavior of (1) on I' is equivalent to
that of (3). Therefore, the system (3) is studied in the

feasible region
r={s.v.hen’:0<s,v 1<l
0<S+V+1<1} @

where (] i denotes the non-negative cone of [I°
including its lower-dimensional faces.

The paper is organized as follows: In section 2,
the model is analyzed the existence of equilibriums
in the model. The SVIR model is conserved to

analyze the stability analysis which consists of the

disease-free equilibrium and endemic equilibria. The
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Lyapunovfunction is analyzed for proving the global

stabilityunder the condition and the locally
asymptotically stable is analyzed both equilibriums in
Section 3. The last section, Numerical simulations are

performed in the last section.

2. Existence of Equilibriums
In the absence of infection, by setting the
right-hand side of system (3) to zero and solving the

the model has a disease-free

] (5)
0

obtained results,
equilibrium E_,
E, =(,.V,.1,)
H ap

z(,u+a,(,u+a)(y+7l)’

and an endemic equilibrium E ", with

. H
S = - -,
u+a+pl (1+v| )
. (6)
. )
V =————,
uty + Bl
where |~ is positive root of cubic equation
h(l*)zwl*3+xl*2+yl*+z=0, (7
with
W:vﬁﬁl(,u+7)>0,
x=vp(u+y)(u+y)+1Bp
+(1-v) uBB >0,
®)

y=(u+7)(B(u+7)+B(u+a))
—vBu(u+7y,)-1pp,
2= (u+y)u+a)u+(1-R),
_ Bu . Bau .
Co(ura)(utry) (ura)(utry)(uty)

Here, Ro is called the basic reproduction number of

system (3). Thus, the following Theorem is

established.
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Theorem 1. The system (3) has a unique endemic
equilibrium E for R, >1, and has no endemic

equilibrium for R) <1.

Proof. Since 0 <V<1. It is clear that, from (8)
W, X > 0and Then, the roots of (7) depend on the
sign of yandZ Now, two cases of R are
considered as follows:
Case I: R <1, then
y=(u+7)(B(u+r)+ B (u+a))—vBu(u+r,)
~vBu(u+y,)-upp
> pu(pu+r)+ B (u+y)(u+a)-pu(u+y,)

= Bu(u+y,)-1pp,

> + +a)|l- P
P G v
_ app, ]

(u+y)(u+a)(uty)

() v a)(1-R) 0.
Z:(,u+7/])(,u+a)(,u+)/)(l—R0)>0.

Thus, if R, <1, we have W>0, x>0, Yy>0 and
Z > 0. By the Descartes’s rules of signs, there is no

endemic equilibrium.

Case2: R, >1, then
y=Bu+n)(u+y)+Bu+y)u+a)
—vBu(p+y,)- 1Bp,

=ﬂ(#+7)(#+%)(1— = j
(u+y)

up )
(H+y)u+a)

>,3,U(,U+7])(1— = j
(#+7)

+,b’lya(1—
(

+,3](ﬂ+7)(#+0!)(1—

up j
H+y)u+a)
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Bu
(u+y)pu+a)
X(l_ Vi j Bua

(u+y)) (u+y)u+a)(u+y,)

(o)
(u+y)u+a)

Since

y>(ﬂ+7)(u+a)(ﬂ+7l)(

a
R = up N B o1

(u+y)u+a) (u+y)u+a)(u+y,)

we get

up .
(H+7)(u+a)

P ua
>1-
() (u+a)(u+y,)
It follows that

v
y>(u+y)u+a)(u+y,) (1— j
(u+ 7)(# +a) (u+y)

(o o)
(,U+7)(,U+0!) ﬂ+7)(ﬂ+a)

=(u+y)u+a)(p+y,) (1— = j
(u+ 7)(# +a) (u+7)
up

[l—j
(u+y)(u+a)

andz=(u+y )(u+a)(u+r)(1-R)<0.

Thus,Ww>0, x>0, y>0 and z<O0if R >1.
By the Descartes’s rules of signs, there is an unique
positive endemic equilibrium.This completes the

proof.

3. Stability of equilibrium

Theorem 2. The disease-free equilibrium E  is
locally asymptotically stable if R <1 and unstable
if Ry >1.

Proof.The Jacobian of system (3) evaluated at E0 is

“(uta) 0 i
“U+a
IEN=| @ ey — P | ()
(u+a)u+y)
0 0 (u+7)R, =D
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with eigenvalues
A=—(u+a)<0, 4, =—(u+y)<0
and A, =(,u+;/)(RO—1).

It follows that all eigenvalues (10) are negative real

part. Therefore, the disease-free equilibrium E is

locally asymptotically stable.

Theorem 3.If R <1, then the disease-free equilibrium

E, of system (3) is globally asymptotically stable, where
_Bu(p+y)+ Bau)(1+v)

o

Proof. Consider a Lyapunov function

S v
L(S,V,1)=5-8, =S, m(—}v -V -V, m(
v

0

its derivative along the solution of the system (3) is

dL ds dv dl S, dS V, dv

dt dt dt dt S dt V dt

S,
=u—pS— N —pul —yN -yl - s

+uS, +pS,1 (1+v1)+aS, -

+ BV +yV, + 1V,
HoS,

AS
-a \"/ —(p+y=pS,A+vh)-BV,)I

S S, LA
S—uS,| —+—=2|-aS,| —+
S, S vV, SV

0

—(u+y=pBS,A+v)= BV, (1+V1))I

S S, vV SV
=—uS,| —+—=2|-aS,| —+
S, S vV, SV

(u+a)(u+y)(u+r)

asV,

S0
+2uS, +3as, —g(ySo +aS,)

PMP4-5

Since all the model parameters are non-negative, it
follows that L'<0 for all S,V,1 >0 if R <1
and L'=0 if and only if S=S,V =V and
I = 0. Now using LaSalle’s invariance principle (J.P.
LaSalle, 1967) of Lyapunov method, the limit set of
each solution is contained in the largest compact
invariant set {(S,V,1)eT:L'(S,V,I) =0}, which
is the singleton{Eo}.Therefore, every solution that
starts in I' approaches E as t — co. This completes

the proof.

Theorem 4. If R >1, then the endemic equilibrium
E" of system (3) is locally asymptotically stable in T,
provided aa, —a, >0, where a,a, and a, are

presented in the proof.

Proof. The local stability for E is governed by the

matrix is
—g 0 —ps (1+201")
I(E")= a _5S -pV’

v
pr(1+v1”)  pI Vsl

The characteristic equation of J (E*) is

A+ai’+ad+a, =0,

where
as’ .
a =242 s,
Y
Q, - - *
a, =2 AV 4 AT (1 2u)

PO . 7] aS’
+vp ST (A+2vl )-vpaS T | —+— |,
S Vv

*

a, =apfs’t (1+2v1')+ p'a S\j" (1+v17)(1+2v1")

, VI
+hBu x >0
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It is seen that
g -
a =242 _yps
Y,

=B (14w )+ B0+ (uty)+(u+a)-vpsT

> B +vB17 + 1+ (u+y)+(u+a)- Bl
=B+ Bl +(u+y,)+(u+a)
2B+ BV +(ury )+ (uta)

=BV (14w )+ (uty)+(u+a)>o0.

We also get

alal - a3

S’ - -
. A (af’+ﬁ;v |
s v v

+ﬁzs"|*(1+v)(1+2v|*)—vﬂs*|*£‘i+“’°:D

s v
ST (1+2v1” VAR

—(ﬁa(ﬂ+7)w+ﬁlﬂ§]

s’ . e
S A st || 22 v
v v

S
+/323‘|‘(1+v)(1+2v|"))_v/;s*|*(f{+0‘%J
S
asS” - S (1+2v17)
+——-VBS | |- S S |
. VI
B
S

According to the Routh-Hurwitz criterion, the endemic
equilibrium E is locally asymptotically stable in I" if

aa, —a, > 0. This completes the proof.

4. Numerical simulations

To investigate the dynamical behavior of the
model, the system (3) is integrated numerically with
parameters values: u=0.01, y=1/5,y, =1/7,
a=land V= 0.5 with various fand f3, .

With above parameter values [ =4 and
B, =1.25, the value of the basic reproduction number

is R =0.51297, which yields R, =0.76946 <1.

0

Therefor, the system (3) has a disease-free equilibrium

E, (0.00990,0.06520,0) and the solutions of the
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model (3) in the Figure 1 converge monotonically to
E, . as guaranteed by Theorem 1 and 2.

With above parameter values f = 8and
B, = 6.5, the value of the basic reproduction number
is R =2.38205>1 and the system has a endemic
equilibrium E (0.00793, 0.02240, 0.03094) . Figure
2 shows all solutions of the model (3) converge to E "of
the model (3) is locally asymptotically stable that is the
disease persists.

For parameter values used: u =0.8,
=396, 5 =20, y=05, y,=04, a=1.0
for each value v; V=0, 0.5, 1.0 and given by
R, =1.9236467 >1. Thus, the system (3) has a
uniqueequilibrium
E (0.2580750, 0.1390115, 0.32825 10) ,
E"(0.2272379,0.1174843,0.367099 ),
and E” (0.1984950,0.0990708,0.4017839),
whereV=0, 0.5 and V=1.0, respectively. Figure
3 shows that the solution are locally asymptotically
stable as guaranteed by Theorem 1 and 4. Moreover,
it is found, see Figure 3, that even R does not
depend on V but the density of infected population
increases as V increases. This verifies that non-linear
incidence rate has effected to the density of infectious

populations.

5. Conclusion

In this paper we study the global stability of
the SVIR model with nonlinear incidence rate
pSI(1+vl), where >0 andO<v<1. Our
result show that the model has the reproduction
number is similar to the model, which is proposed by
Lie et al. (2008). (i.e., the reproduction number of the
study system (3) does not depend on the parameter V
in the nonlinear incidence function). The following

results were obtained:
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(i) The model has a locally and globally
asymptotically stable whenever R <1.

(ii)) A unique endemic of the model has a locally
asymptotically  stable = whenever the  basic
reproduction number is above the unity.

(iii) In the numerical simulation of this model, the
parameters v and B are effect to the infectious
population and an endemic equilibrium that those
parameters measure the effects of sociological,

psychological or other mechanisms disease.
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Figure 1  Time series plots for the system (3) with
parameter values used:
u=001, g=4, g =125,
y=1/5 y,=1/7Tand v=0.5.
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Figure 2  Time series plots for the system (3) with
parameter values used:

p#=001, g=8, f =65,
y=1/5 y,=1/7 and v=0.5.
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Figure3 Timeseries plots for the density of
infectiousindividuals |(t) of the system (3)
with parameter values used u# = 0.8,
B =3.96,8=20,y=0.5,

7, = 0.4, = 1.0 to compare the different

parameters V;V=0, 0.5and v=1.0,

respectively.

Acknowledgements

This study was granted by faculty of
Science and supported byScience Achievement
Scholarship of Thailand (SAST), King Mongkut’s

University of Technology Thonburi, Thailand.

References

Alexander M.E. and Moghadas S.M. 2004.Periodicity
in an epidemic model with a
generalizednon-linear
incidence.Math.Biosci. 189: 75-96.

Jin Y., Wang W. and Xiao S. 2007.An SIRS models
with a nonlinear incidence rate. Chaos,
Solitons and Fractals. 34: 1482-1497.

Kermarck W.O. and Mckendrick A.G. 1927.
A contributions to the mathematical theory
of epidemics. Proceedings of the Royal

Society of London. 115: 700-721.



I Tliia’cional
Graduate
Research

Kribs-Zaleta C.M. and Velasco-Hernandez J.X.
2000. A simple vaccination model with
multiple endemic states. Mathematical
Biosciences. 164: 183-201.

LaSalle J.P. 1967. The stability of Dynamical
Systems, CBMS-NSF Regional
Conference Service in Application
Mathemetics 25, SIAM, Philadelphia.

Liu X., Takeuchi Y. and Iwami S. 2008. SVIR
epidemic models with vaccination
strategies. Journal of Theoretical Biology.

253: 1-11.

307

PMP4-8

van der Driessche P. and Watmough J. 2000. A
simple SIS epidemic model with a
backward bifurcation, Journal of
Mathematical Biology. 40: 525-540.

van der Driessche P. and Watmough J. 2003.
Epidemic solution and endemic
catastrophes.Fields Institute
Communications. 36: 247-257.

Zhou X. and Cui J. 2011. Analysis of stability and
bifurcation for and SEIV epidemic model
with vaccination and nonlinear incidence

rate. Nonlinear Dynamics. 63: 639-653.





