
PMP4-1 
 

Stability Analysis of an SVIR  Epidemic Model with Nonlinear Incidence Rate 
การวเิคราะห์เสถียรภาพของแบบจําลองการระบาด SVIR ทีม่ีอตัราอุบัติการณ์ทีไ่ม่เป็นเชิงเส้น 

 
Aphirak Boonpikum (อภิรักษ ์บุญพิคาํ)*  Dr.Wirawan Chinviritasit (ดร.วริาวรรณ ชินวริิยสิทธ์ิ)** 

 
ABSTRACT 

 This paper, an SVIR  epidemic model with nonlinear incidence rate is investigated. The stability of the 
model depends on the basic reproduction number. The global asymptotically stable of the disease-free is proved by 
constructing a Lyapunov function and LaSalle’s invariant set theorem. An unique endemic equilibrium exists and is 
locally asymptotically stable whenever 

0
1R  . Numerical simulation is illustrated to support the analytical results 

and to study the effect of nonlinear incidence rate on the SVIR  model. 
 

บทคดัย่อ 
 งานวิจยัน้ีไดส้ํารวจแบบจาํลองการระบาด SVIR ท่ีมีอตัราอุบติัการณ์ท่ีไม่เป็นเชิงเส้น ซ่ึงเสถียรภาพของ
แบบจาํลองน้ีข้ึนอยูก่บัค่าระดบัการติดเช้ือของโรค การสร้างฟังกช์นัไลอะพอนอฟและทฤษฏีเซตไม่แปรผนัของลาซาล
ไดน้าํไปพิสูจน์เสถียรภาพเชิงเส้นกาํกบัวงกวา้งของจุดสมดุลภายใตส้ภาวะไร้โรค และจุดสมดุลภายใตส้ภาวะการแพร่
ระบาดมีเสถียรภาพเฉพาะท่ีเชิงเส้นกาํกบัเม่ือ 

0
1R  นอกจากน้ีงานวิจยัไดแ้สดงผลลพัธ์เชิงตวัเลขเพ่ือใชส้นับสนุน

ผลลพัธ์เชิงทฤษฏีและศึกษาผลกระทบของอตัราอุบติัการณ์ไม่เชิงเส้นในแบบจาํลอง SVIR  
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1.  Introduction 
 Mathematical models in epidemiology or 
epidemic model are used to understand epidemiological 
phenomena, to predict the infectious disease progress 
and to prevent public health for controlling the diseases. 
Most epidemic models descend from the classical SIR  
(Susceptible-infectious-recovered) model of Kermack 
and Mckendric established in 1927 (W.O. Kermarck and 
A.G. Mckendrick, 1927). In fact, vaccines are extremely 
important and have been proved to be the most effective 
and cost-efficient method of preventing infectious 
diseases such as measles, polio, diphtheria, tetanus, 
pertussis, and tuberculosis. In recent years, many 
researchers have discussed the SIR  model allowing 
vaccination, that is, the SVIR  model. 
 Kribs-Zaleta C.M. and Velasco-Hernández 
J.X. (2000) presented a SVIS  epidemic model and 
found that this model exhibited the phenomenon of 
backward bifurcation. Furthermore, the model is applied 
for studying the vaccination of disease pertussis and 
tuberculosis. Liu X., Takeuchi Y. and Iwami S. (2008) 
established two SVIR  model to describe continuous 
vaccination strategy and pulse vaccination strategy, 
respectively. However, in modeling disease epidemics 
take place in ecological system, the incidence rate plays 
a key factor in the transmission of infectious diseases. It 
has been suggested by several authors that the disease 
transmission process may have a nonlinear incidence 
rate. This allows one to include behavioral changes and 
prevent unbounded contact rates. A particular example 
of such an incidence rate is given by -1(1 )kI I S  , 
where 0  , 0  and 0k  . This incidence with 
  near one, represents saturation or multiple exposures 
before infection. van der Driessche P. and Watmough J. 
(2000, 2003) introduced this incident into SIS  
epidemic model where 0  , 0  and 0k  . 

They found that SIS epidemic model with this incidence 
rate exhibited backward bifurcation. Alexander M.E. 
and Moghadas S.M. (2004) analyzed an SIV  model 
with a generalized nonlinear incidence rate 

(1 )qI I S  , where 0  , 0   and 0 1q  . 
The results showed that bistability and various 
Hopfbifurcation occurred. Jin Y., Wang W. and Xiao S. 
(2007) studied the backward bifurcation, the Hopf 
bifurcation and Bogdanov-Takens bifurcation by 
analyzing a SIRS  model with nonlinear incident rate in 
the form 1(1 )kI I S   , where 0  , 0  and 

2k  . Zhou X. and Cui J. (2011) investigated the 
SEIV  model with nonlinear incidence rate of the form 

1(1 )qI I S   with 0  , 0   and 2q  . 
 The aim of this paper is to investigate the 
effect of nonlinear incidence rate (1 )SI I  , 0   
and 0 1v   on the dynamic of a SVIR  epidemic 
model proposed by  Liu X., Takeuchi Y. and Iwami S. 
(2008). To this end, we consider the following 
differential equations 

1 1

1

1

(1 ) ,

,

(1 ) ,

,

dS
S SI I S

dt

dV
S VI V V

dt

dI
SI I VI I I

dt

dR
I I R

dt

    

   

    

  

    

   

    

  

 (1) 

 

where the state variables S , V , I  and R  denote 
the densities (or fractions) of susceptible, vaccinated, 
infected and recovered individuals, respectively. 
Theparameters   is the natural birth rate which is 
assumed to be equal natural death rate;   is the 
transmission rate;  is the rate at which susceptible 
individuals who are moved into the vaccination 
process; 

1
  is the possibility of infection with a 

disease transmission rate while contracting with 
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infected individuals;   is the recovery rate of 
infected individuals and 

1
  is the average rate for 

individuals to obtain immunity andmove into 
recovered population, respectively. It is assumed that 

1
  is less than   because the vaccinated individuals 
may have some partial immunity during the process 
or they may recognize the transmission characters of 
the disease and hence decrease the effective contacts 
with infected individuals.Adding all equations in (1) 
gives  

dN dS dV dI dR
N

dt dt dt dt dt
        (2) 

 

which has the following implication: the three-
dimension simplex 

 4( , , , ) : 1S V I R S V I R


        
is positively invariant. On the simplex  , we have 
       1R t S t V t I t    , thus, the dynamics 

of system (1) is studied by analyzing the following 
three-dimensional system: 

1 1

1

(1 ) ,

,

(1 ) ,

dS
S SI I S

dt

dV
S VI V V

dt

dI
SI I VI I I

dt

    

   

    

    

   

    

 (3) 

 

The dynamical behavior of (1) on   is equivalent to 
that of (3). Therefore, the system (3) is studied in the 
feasible region 




3, , ) : 0 , , 1,

      0 1

S V I S V I

S V I


    

   
 (4) 

 

where 3


 denotes the non-negative cone of 3

including its lower-dimensional faces. 
 The paper is organized as follows: In section 2, 
the model is analyzed the existence of equilibriums  
in the model. The SVIR model is conserved to 
analyze the stability analysis which consists of the 
disease-free equilibrium and endemic equilibria. The 

Lyapunovfunction is analyzed for proving the global 
stabilityunder the condition and the locally 
asymptotically stable is analyzed both equilibriums in 
Section 3. The last section, Numerical simulations are 
performed in the last section. 
 
2. Existence of Equilibriums 
 In the absence of infection, by setting the 
right-hand side of system (3) to zero and solving the 
obtained results, the model has a disease-free 
equilibrium

0
E , 

   

0 0 0 0

1

( , , )

, , 0

E S V I

 

     




  

 
 
 

 (5) 

 

and an endemic equilibrium *E , with 

 
*

* *

*

*

1 1

*

,
1

,

S
I vI

S
V

I



  



  


  


 

 (6) 

 

where *I  is positive root of cubic equation  
 * *3 *2 * 0,h I wI xI yI z      (7) 

with 

 1
0,w v      

  
 

1 1

1
1 0,    

x v

v

     



   

  

  
 

1 1

1 1

( ) ( )

,     

y        

   

    

  

 1 0
( )( )( ) 1 ,z R           

(8) 

        
1

0

1

.R
 

         
 

    

 
Here, 0R   is called the basic reproduction number of 
system (3). Thus, the following Theorem is 
established. 
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Theorem 1. The system (3) has a unique endemic 
equilibrium *E for 

0
1R  , and has no endemic 

equilibrium for 
0

1R  . 
 
Proof. Since 0 1v  . It is clear that, from (8)                 

, 0w x  and  Then, the roots of  (7) depend on the 
sign of y and z .Now, two cases of 

0
R  are 

considered as follows: 
Case 1:

0
1R  , then  

        
 

      
 

  
  

   
   

1 1 1

1 1

1 1 1

1 1

1

1 0

1

1

1 0,

  

  

1

 

y

R

          

   

          

   

    

    


   


     

      

  

      

  

  

    


  


    

 

    1 0
1 0z R           . 

 
Thus, if 

0
1R  , we have 0w  , 0x  , 0y   and 

0z  . By the Descartes’s rules of signs, there is no 
endemic equilibrium.  
 
Case 2: 

0
1R  , then 
 

 

 

 

1 1

1 1

1

1

1

1

( ) ( )( )

  

( ) 1
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Since 

 
1

0

1

1
( )( ) ( )( )

R
 

         
  

    
,  

we get 

 
1

1

1 .
( )( ) ( )( )

  

         
 

    
 

It follows that 

 

 

1

1

2

( )( ) 1
( )( ) ( )

  1 1
( )( ) ( )( )

( )( ) 1
( )( ) ( )

  1
( )( )

y
 

     
     

 

       

 
     

     



   

    
  

  
   

    
  

 
 

  
  
  

  
  
  

  
  
  
 
 

  
and     1 0

1 0z R           . 

 
Thus, 0w  , 0x  , 0y   and 0z  if 

0
1R  . 

By the Descartes’s rules of signs, there is an unique 
positive endemic equilibrium.This completes the 
proof. 
 
3.  Stability of equilibrium 
Theorem 2. The disease-free equilibrium 

0
E  is 

locally asymptotically stable if 
0

1R   and unstable 
if 

0
1R  . 

Proof.The Jacobian of system (3) evaluated at 
0

E  is        
5 

1

0 1

1

0

( ) 0

( ) ( )
( )( )

0 0 ( )( 1)

J E

R


 

 

 
  

   

 


 




  

 

 

 
 
 
 
 
 
 
  

 (9) 
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with eigenvalues 
 1

0      ,  2 1
0     

and    3 0
1R     .                

(10) 

It follows that all eigenvalues (10) are negative real 
part. Therefore, the disease-free equilibrium

0
E  is 

locally asymptotically stable. 
 
Theorem 3. If 

01
1R  , then the disease-free equilibrium 

0
E  of system (3) is globally asymptotically stable, where 

   
   

1 1

01

1

1 v
R

    

     

  


  
. 

 
Proof. Consider a Lyapunov function  

its derivative along the solution of the system (3) is       

 

 

 

0 0

0

1
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1 0 1 0 0

0 0
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0

0 1 0

0 0 0

0 0
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2 3
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2
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2 3
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Since all the model parameters are non-negative, it 
follows that 0L   for all , , 0S V I   if 

01
1R 

and 0L   if and only if 
0
,S S

0
V V  and 

0.I  Now using LaSalle’s invariance principle (J.P. 
LaSalle, 1967) of Lyapunov method, the limit set of 
each solution is contained in the largest compact 
invariant set  ( , , ) : ( , , ) 0 ,S V I L S V I   which 
is the singleton 0

.E Therefore, every solution that 
starts in   approaches 

0
E  as t   . This completes 

the proof. 
 
Theorem 4. If 

0
1,R   then the endemic equilibrium 

*E  of system (3) is locally asymptotically stable in  , 
provided 

1 2 3
0a a a  , where 

1 2
,a a  and 

3
a  are 

presented in the proof. 
 
 

Proof. The local stability for  *E  is governed by the 
matrix is 

 

 

 

* *

*

*

* *

1*

* * * * *

1

0 1 2

1

S I
S

S
J E V

V

I I I v S I


 


 

   

  

  



 
 
 
 
 
 
 
  

 

The characteristic equation of  *J E  is   
3 2

1 2 3
0a a a      ,  

where 
*

* *

1 * *

S
a v S I

S V

 
   , 

2 * * 2 * * *

2 1*

*

2 * * * * *

* *

(1 2 )

     (1 2 ) ,

a V I S I vI
V

S
v S I vI v S I

S V


 

 
 

   

   
 
 
 

 

    
*2 *

* * * 2 * *

3 1 *

* *

2

1 *

1 2 1 1 2

       0

S I
a S I vI vI vI

V

V I

S

  

 

    

 

 

0 0 0 0

0 0

( , , ) ln ln ,
S V

L S V I S S S V V V I
S V
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It is seen that   
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1 * *
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According to the Routh-Hurwitz criterion, the endemic 
equilibrium *E  is locally asymptotically stable in  if 

1 2 3
0a a a  . This completes the proof. 

 
4.   Numerical simulations 
 To investigate the dynamical behavior of the 
model, the system (3) is integrated numerically with 
parameters values: 0.01,  1/ 5, 

1
1 / 7, 

=1 and 0.5v   with various  and 
1

 . 
 With above parameter values 4  and 

1
1.25  , the value of the basic reproduction number 

is 
0

0.51297R  , which yields 
01

0.76946 1R   . 
Therefor, the system (3) has a disease-free equilibrium 

 0
0.00990, 0.06520, 0E  and the solutions of the 

model (3) in the Figure 1 converge monotonically to 

0
E , as guaranteed by Theorem 1 and 2. 
 With above parameter values 8  and 

1
6.5  , the value of the basic reproduction number 

is 
0

2.38205 1R    and the system has a endemic 
equilibrium  * 0.00793, 0.02240, 0.03094E . Figure 
2 shows all solutions of the model (3) converge to *E of 
the model (3) is locally asymptotically stable that is the 
disease persists.                
 For parameter values used: 0.8, 

1 1
3.96,  2.0,   0.5,   0.4,       1.0 

for each value v ; 0,   0.5,   1.0v   and given by 

0
1.9236467 1R   . Thus, the system (3) has a 

uniqueequilibrium  
* 0.2580750, 0.1390115,E  ,0.3282510

 * 0.2272379, 0.1174843, 0.367099 ,E  
and  * 0.1984950, 0.0990708, 0.4017839 ,E  
where 0,   0.5v   and 1.0,v   respectively. Figure 
3 shows that the solution are locally asymptotically 
stable as guaranteed by Theorem 1 and 4. Moreover, 
it is found, see Figure 3, that even 

0
R  does not 

depend on v  but the density of infected population 
increases as v  increases. This verifies that non-linear 
incidence rate has effected to the density of infectious 
populations. 
 
5.  Conclusion 
 In this paper we study the global stability of  
the SVIR model with nonlinear incidence rate 

(1 )SI I  , where 0   and 0 1  . Our 
result show that the model has the reproduction 
number is similar to the model, which is proposed by 
Lie et al. (2008). (i.e., the reproduction number of the 
study system (3) does not depend on the parameter v  
in the nonlinear incidence function). The following 
results were obtained: 
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(i) The model has a locally and globally 
asymptotically stable whenever 

01
1R  . 

(ii) A unique endemic of the model has a locally 
asymptotically stable whenever the basic 
reproduction number is above the unity. 
(iii) In the numerical simulation of this model, the 
parameters   and 

1
  are effect to the infectious 

population and an endemic equilibrium that those 
parameters measure the effects of sociological, 
psychological or other mechanisms disease. 
 

 
Figure 1  Time series plots for the system (3) with 

parameter values used:
0.01,  4,  

1
1.25, 

1
1 / 5,   1 / 7   and 0.5v  . 

 

 
Figure 2 Time series plots for the system (3) with 

parameter values used:
0.01,   8,  

1
 6.5, 

1
1 / 5,   1 / 7    and 0.5v  . 

Figure 3 Timeseries plots for the density of 
infectiousindividuals ( )I t  of the system (3) 
with parameter values used 0.8, 

1
3.96, 2.0, 0.5,    

1
0.4, 1.0   to compare the different 

parameters v ; 0,v  0.5 and 1.0v  , 
respectively. 
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