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Peaks Over Threshold Model of Generalized Pareto Distributions in Non-life Insurance
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ABSTRACT

The extreme events are usually modeled by extreme value theory (EVT). A peaks over threshold (POT)
model is presented by Generalized Pareto Distribution (GPD) which is considered in the form of exponential and
Pareto distribution in this research. The parameters estimations are composed by Pickands, Hill, Decker-Einmahl-de
Haan and maximum likelihood estimate (MLE). The retention limit or threshold u of claim severity is analyzed for
model fitting in tail distributions. We applied the models to the Danish fire data and motor insurance claims of a Thai
non-life insurance company. We have found that the results of the exponential distribution is better fit than Pareto
distribution for both Danish fire data and motor insurance claims with threshold # of 8,733,100 Krone and 26,457

Baht, respectively.
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Introduction

The extreme value theory (EVT) is mainly represented the modeling of extreme events and providing the
model of tail distribution. The extreme events generate extreme value both minimum and maximum which deal with
a low frequency of occurrence but consequently the high risk are arisen. The popular methodologies of EVT for
applying to financial and insurance risks are the block maxima (' minima) (BMM) approach and the peak over
threshold (POT) approach. The BMM is based on the Generalized Extreme Value distribution (GEV) which is
relevant to distributions of the Gumbel, Fréchet and Weibull distributions. The POT is based on the Generalized
Pareto Distribution (GPD) which is considered the exceedances over a given threshold. The EVT is described in a
book of Fisher and Tippett (1928), Coles (2001), Kluppelberg (2004), Beirlant at al. (2004) and Reiss at al. (2007).

The risk of insurance means losses or claims which are defined as the economic losses. The insurer can take
some part of insured’s losses regarding to a retention limit or a threshold ©. The excess of U is a responsibility of a
reinsurer. The losses over U is an important data set and it is very useful for reinsurance work. Since the extreme
cases are limited for model fitting in a whole data, thus the modeling in tail of distribution is modeled by POT
approach. The modeling by POT approach is presented by some papers. For example, Stephenson (2002) proposed
the modeling of exceedances over a threshold by maximum likelihood estimation. Anna and Carl (2012) concerned
about fitting the GPD to the data on exceedances of high thresholds and presented a tail index estimation by using
Hill estimator. Stephaney (2011) proposed an adaptive version of the Hill estimator for parameter estimation and used
Monte-Carlo simulations for model illustrations. Rydell (2013) and Vladimir O. at a/ (2012) presented value at risk
(VaR) by POT method and solved the model fitting by GPD. Valeria and Matej (2012) presented POT method for
modeling of tail distribution with the data of car insurance claims from a Slovak insurance company over the period
1998-2008.

Therefore, we are interested in POT approach for model fitting based on GPD of the claims which are over
the threshold U. The mean excess of loss is calculated for expected cost of claims which is very useful for

determining of threshold U and pricing in reinsurance.

Objectives of the study
The objectives of the research is are as follows:
1. To find the estimated parameters of GPD for actual data sets.

2. To find a threshold © which is appropriate to the claims data.

Materials and methods
The distribution of GPD is used for modeling exceedances over a threshold U. Their parameters estimation

and a statistical test for model fitting are described as follows.
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Models
Let a basic losses data X = X1,X,,...,X;; be a random variables with independent and identically
distributed (iid) functions F. We are interested in an estimation of the distribution function F,; which contains some
losses above a certain threshold U. Let Y be a random variable which is the exceedance over U such that ¥ = X —

U. The distribution of Y is defined as
F)=PX—u<ylX>u} ;y>0
Fy(y +u) — Fx(w)  Fx(x) — Fx(w)
FrQly) = =
1—Fyx(uw) 1—Fy(u)
F(x)—F(u)

1-F(u) *

It is abbreviated as Fy (y) =
The Fy is called the distribution function of exceedances above threshold u. By the conditional probability,

F,, can be written by

FO-F@ o
E,(x) = 1—F(u) '
0 ;  elsewhere.

The probability density function f is of the form

_ f) _
fulx) = ray X U > 0.

For u large enough, the distribution of exceedances above U is approximated by a GPD, i.e.,
F,~ Geg(y) as u—> o or fy = gep(y) as u — oo,
where Gf, 8 (y) is the GPD. F,, and f;, are the distribution function and The probability density function of the
exceedances above U, respectively.

The Generalized Pareto Distribution (GPD) is defined as follows:
( -1
VAN
1- 1+§E JifE#0

L 1—exp(_7y> ,if £E=0,

Gep(y) =

where & € R and f§ > 0 are the parameters.
In case of & # 0, the distribution is separated into 2 cases. That is, if & = 0, we require 0 < y < o and if
& <0, werequire that 0 <y < _?B . The parameter ¢ is called an extreme value index (EVI). The parameter 3 is
called the scale parameter and it is depending on the threshold U, i.e., § = S (w).
The probability density function (PDF) of GPD is given by
-1
BV N
E(l-l—f[—?) ;if E#0
gep (V) =
! (_y) if £=0
—exp|— ;i =0.
=P \p

In our research, the limited distribution of GPD as shown above are considered for 2 distributions which are in

case of & = 0and & > 0 for exponential and Pareto distribution, respectively. The models of GPD are as follows.
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The exponential distribution

The CDF and PDF are as follows;
4
Gf,ﬁ ) =1—-exp <?>
1 —_
9ep(y) = 5 €XP (73’), where y >0, > 0.
The Pareto distribution

The CDF and PDF are as follows;
-1

Gep(y)=1— (1 + €%>?

-1

_1 e !
9ep(y) = 3(1 +€B) , where y>0 and &, § > 0.

Parameters Estimation
The estimated parameters are depending on the models. The [ is estimated by maximum likelihood
estimate (MLE) for both the distributions of exponential and Pareto. For &, we have calculated based on the methods
of Hill, Decker-Einmahl-de and Haan, Pickands and MLE. The estimated parameters are compared for model fitting.
The parameters estimations are described as the following items:
Estimating the Shape Parameter &
There are 4 methodologies for estimating . The estimated & are compared for model fitting.
. . . i th : . .
Define the ordered statistics Xj., as the information | data for | = 1,2, y+++,[1 which the data is
ordered as X1., < Xp.p < +-+ < X,y pertaining to the original iid random variables X7, X5, ..., Xj,. We derived
it for & € IR. The estimated ¢ is calculated under the following estimators.
(1) Hill Estimator
The estimated parameter is of the form
k
oy 1
gk,n = EZ ln(yn—i+1:n) —nyn—kn
i=1
where k € {1,2,3,...,n}, ¢ > 0and k > 0.
(2) Decker-Einmahl-de Haan Estimator
Let £ € R the estimation of ¢ is given by
Dy2 -1
. 1)
1
£D = 1+H§)+§(%—1
(Hy")

1 & 2 1
where Hr(z ) = ‘fllc-ln and H7(1 ) = X ?:1(1n(Yn—i+1:n) - ln)’n—k:n)z-
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(3) Pickands Estimator

The parameter is estimated as

PR s Snde
n

in2 y

, wherek = {1,2,...,n}.

n—[§]+1:n_yn_k:n

(4) The Maximum Likelihood Estimate (MLE)
The generic situation is that we observe n-dimensional iid random vector X with probability density

function f (x, @). Itis assumed that the parameter 6 is a fixed, likelihood function of @ is defined as

1©® = | [reo.
i=1

The log likelihood function is in the form of

InL(6) = Z Inf (x;; 6).
i=1

To maximize the natural log of L by first partial derivative with respect to parameter 8 is equal to zero, we

obtain

% InL(6) = 0.
We solved the equation as above for estimated parameter 0 .
Estimation of Parameter
The f3 is estimated by MLE such that the description as below.
The exponential distribution
The PDF is in the form of
gly) = %exp (_Fy) whereas § >0,y > 0.

The Likelihood function is the form of

o [
=1 i=1
Take In, we get that

i = nf [jen(G) = ymgen(3)
i=1 i=1

The maximization by first partial derivative with respect to parameters is equal to zero. They have been

shown as below;
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dC; InL(B) = % zk:ln (% exp (_gi) )

i=1
d| ‘ 1 - —y;
= — ln—+Zexp( l)
dp Z B £ B
Li=1 i=1
d -k k .
-4 (lnl—lnﬁ)+z Vi
dp | & B
Li=1 i=1
d k k
= _ﬁ Z(lnl —ninp) — Z?
Li=1 i=1
- O_E+[g22k 1 Vi
The estimation for the parameter 5 can be obtained by solving the equation:
L = 0.
We get
k
1 Z k 0
2 Vi—5 =
B2LY T
k
Z k
w2/ YiTg
2L TR
k

Therefore ,E’ is an estimated parameter of f3. That is ,é ===
The Pareto distribution

The PDF is in the form of

-1

gy = (1+f ) , whereas § >0,y > 0.

The Likelihood function is in the form of

LEB) = ﬁﬁ(u%)

i=1

1

Take In, we obtain
K1 EypT
InL(E,B) = In HE( +%>

Z(zm _Inp) + Zk:ln <1 + Fy)%l_

i=1

Z(zm —Inp) — (% + 1)i In (1 + %’)

i=1

1
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We get

InL(¢,B) = —k(lnﬁ)—(1+ )iln(uﬁ)

i=1
The maximization by first partial derivative with respect to parameters is equal to zero. They have been shown as

below;
k
aﬁL(s‘ﬁ) aﬁ( kin) — (1+ )Z% (1+@)
-5 +%)Z (e )
- % ( >zﬁz+ﬁ€yl
We get that

k
6L§ZB)=_§+(%+1);[;25_7}25%=

The Newton-Raphson is applied for solving equation to find estimated parameter f3.

Goodness of Fit Test

The goodness of fit (GOF) tests measure the compatibility of a random sample with a theoretical probability
distribution. We use Kolmogorov-Smirnov Test do decide if a sample come from a hypothesized continuous
distribution. It is based on the empirical cumulative distribution function (ECDF). Assume that we have a random

sample Y1, Y5, ..., Vi from some continuous distribution with CDF G (y). The empirical CDF is denoted by

Gk y) = ! [Number of observations < y|.
The theoretical distribution Gy (y) and the empirical distribution function Gjlf ).
The K-S test statistic is defined by
D = max |G} () = G ()]
Plots for Threshold
There are 3 criterions for discussion on plots for threshold U, such as mean excess plot, stability of Hill s plot
and stability of Pickands plot. The benefit of these are to be guideline for choosing of threshold uU.
(1) Mean Excess Plot

The mean excess function, € (1), or mean excess over the threshold value  is in the form of
e(u) = EX —ulX >u).
Since F, = Ggpg thus e(u) is linear function of u. Then we obtain that

= [L2ED,, Bt

T—rw® = 1-¢

u

for f+éu>0,& > 1.
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The mean excess plot (ME plot) is a plotting technique which is plotted between GPD and threshold data.
(2) Stability of Hill’s Plot
The Hill’s plot is given by points [k, §° Ilzn ] where fA ,Izn is the Hill estimation.
(3) Stability of Pickands Plot

The Pickands plot is done by points [k, é ,I; n ] where é ,1; n 1s the Pickands estimation.

Results
The GPD are applied to the actual claims data sets which are composed by fire losses data and motor
insurance claims data. Some results are explained as the following items.
Actual Losses Data
Characteristics of Danish Fire Loss Data
The Danish data consist of 2,167 losses over one million Danish Krone (DKK) from the years
1980 to 1990 inclusive. The loss is combined damage of buildings, personal property and loss of profits. The basic
characteristic of data is show in Table 1. Figure 1 shows histogram of data.

Table 1 Basic characteristics of data

Count 2,167 Min 1,000,000
55 % Percentile 1,886,300 Max 152,413,200
65 % Percentile 2,259,300 Mean 3,295,900
75 % Percentile 3,021,600 Median 1,774,623
85 % Percentile 4,612,000 Skewness 13.2420

95 % Percentile 8,733,100 Kurtosis 264.6959

Characteristics of Motor Insurance Claims Data

The motor insurance claims data , in Thai Baht, is a voluntary plan which contains 1,296 observations of

non-life insurance company in Thailand the year 2009. Figure 2 shows histogram of data

Table 2 Basic characteristics of data

Count 1,296 Min 159

55 % Percentile 8,353 Max 899,879
65 % Percentile 10,789 Mean 17,662
75 % Percentile 16,045 Median 7,296

85 % Percentile 26,457 Skewness 10.6589
95 % Percentile 66,455 Kurtosis 182.8183
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Model Fitting Results

The results are contain the D-value of K-S test and estimated parameters that are relied on the threshold 1. The
number of data, k, is reducing as U increased. The MLE is applied to models, Exponential distribution and Pareto
distribution, for ﬁ . For pareto distribution, The é is estimated by MLE and 3 methods of f estimations.

Danish Fire Data

Table 3 shows the results model fitting and e(u) which are relevant to truncated data based on percentiles.
From Table 3, according to K-S test, for all threshold U, the models cannot be fitting to the data sets with a significant
level at 0.05. Mostly, D-value of exponential distribution are less than D-value of Pareto distribution which the least
value is 0.1184. Pareto distribution, the D-value based on Hill’s estimator, are the least. The e(u) of exponential and
Pareto distributions trends to be increased as increasing U. At the least D-value at 95" percentile (U =8,733,100), the

e(u) is 12,429,000 Krone. Figure 3 shows the D-value of models with respective to truncated percentiles.

-267-
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Table 3 GPD fitting to Danish fire data

Value
Item Percentile
55 65 85 90 95
u 1,886,300 2,259,300 3,021,600 5,920,300 8,733,100
k 975 758 542 217 108
Exponential
:é 3,736,000 4,383,500 5,232,400 8,433,900 12,429,000
D-value 0.1884 0.1908 0.1896 0.2212 0.1184
e(u) 3,736,000 4,383,500 5,232,400 8,433,900 12,429,000
Pareto
MLE é 0.6244 0.5370 0.6165 0.4431 0.3486
:é 1,594,900 2,116,700 2,948,700 4,718,600 8,016,900
D-value 0.7975 0.8435 0.7995 0.8908 0.9343
e(u) 7,382,000 7,192,200 15,102,000 13,184,000 16,980,000
E estimations
Hill’s éllgn 0.7490 0.7582 0.6311 0.6564 0.6786
Ié 1,478,000 1,864,100 2,919,200 4,180,600 6,690,700
D-value 0.7360 0.7316 0.7919 0.7777 0.7631
e(u) 11,520,000 14,792,000 18,805,000 23,477,000 39,261,000
Decker él?,n 0.6536 0.6097 0.5895 0.5043 0.4297
de-Haan ’BA 1,565,200 2,022,200 3,005,200 4,538,500 7,602,000
D-value 0.7826 0.8049 0.8136 0.8579 0.8937
e(u) 8,076,500 8,711,500 13,942,000 15,181,000 19,910,000
Pickands élf,n 0.6394 0.5400 0.1040 1.1297 0.0999
B\ 1,579,500 2,112,600 5,033,800 3,502,800 10,216,000
D-value 0.7898 0.8419 0.9969 0.5834 0.9907
e(w) 7,724,200 7,244,200 6,153,200 - 12,319,000

Motor Insurance Claims

Table 4 shows the results model fitting and e (1) which are relevant to truncated data based on percentiles.
From Table 4, according to K-S test, for all threshold U, the models cannot be fitting to the data sets with a significant
level at 0.05. Mostly, D-value of exponential distribution are less than D-value of Pareto distribution. Pareto distribution,

the D-value based on Hill’s estimator, are the least. The e (1) of exponential and Pareto distributions trends to be
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increased as increasing u. At the least D-value at 85" percentile (U = 33,852), the e(u) is 47,510 Baht. Figure 4 shows
the D-value of models with respective to truncated percentile.

Table 4 GPD fitting to Motor insurance claims

Value
Item Percentile
55 65 85 90 95
u 8,353 10,789 26,457 36,648 66,455
k 583 454 194 130 65
Exponential
B 25,944 30,570 47,510 58,512 75,589
D-value 0.1926 0.1783 0.1611 0.1408 0.1727
e(u) 25,944 30,570 47,510 58,512 75,589
Pareto
MLE é 0.6589 0.5514 0.5141 0.4241 0.4938
B 10,722 14,713 24,747 34,495 41,263
D-value 0.7792 0.8347 0.8522 0.8979 0.8529
e(u) 47,566 46,057 78,911 86,881 146,360
E estimations
Hill’s EAII(-I,TI 0.9618 0.9454 0.7480 0.7287 0.5774
B 9,025 11,979 21,483 28,903 38,974
D-value 0.6450 0.6506 0.7329 0.7393 0.8081
e(u) 447,750 406,100 163,780 204,950 183,040
Decker él?,n 0.7584 0.6808 0.8535 0.4970 0.4959
de-Haan B 10,084 13,608 23,631 32,846 41,201
D-value 0.7310 0.7676 0.8151 0.8588 0.8518
e(w) 67,947 65,649 93,788 101,500 147,120
Pickands é\]sn 0.5975 0.5504 0.4227 0.1638 0.6770
’é 11,175 14,723 26,481 43,807 36,665
D-value 0.8108 0.8353 0.9012 0.9901 0.7570
e(w) 40,170 45,954 65,249 59,569 252,700
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Figure 3 D-value of models based on Danish Fire Data
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Figure 4 D-value of models based on Motor Insurance Claim

There are e (u) plot, Hill’s plot and Pickand’s Plot which are the following figure as below.

(1) Danish Fire Data

Figure 5 shows the plot of é and k. The curve of trend to be straight line when increased.

Asat k = 1,083 with u = 1,774,623 , the value for all methods are not much difference, i.e., the value fA of Hill,

Decker Einmahl-de Haan, Pickands Estimators and MLE are 0.7490, 0.6734, 0.7674 and 0.6883 respectively.

Figure 6 shows the plot of mean excess of loss and the threshold. The e () of all estimation method provided nearly the

same value at the threshold u = 3,246,200.
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Figure 5 The plot of k and E

(2) Motor Insurance Claims

2.5
Hill
Decker de-Haan
2 Pickands
***** MLE
/
/
//

@ 15F /

8 /

i /

p /

g /

= 1r /

/
/
/ /
05- /A // -
/ #
/ \ ) A
—=/ Al‘\i ’/v — '
o— . r r r r
0 0.5 1 15 2 25
u

Figure 6 The plot of 4 and e (W)

Figure 7 shows the plot of k and é . The curve of é\ trend to be straight line when k increased.

Figure 8 shows the plot of mean excess of loss and the threshold U plot based on Motor Insurance Claims. The

e(u) of all estimation method provided nearly the same value at the threshold u = 39,986.
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Figure 7 The plot of k and €. Figure 8 The plot of # and e(w)

Discussion and Conclusions

The model of exponential distribution is the better fit to Danish fire data and motor insurance data sets with

threshold U are 8,733,100 Krone and 26,457 Baht, respectively.

In this research is pending for analysis of choosing the threshold U which is made optimal of models. It will

be continued for further research. Other models that provide more parameters are interesting for study such as the

models for 4 and 5 parameters are Kappa Distribution and Wake Distribution, respectively.
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