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ABSTRACT 

The extreme events are usually modeled by extreme value theory ( EVT) .  A peaks over threshold ( POT) 
model is presented by Generalized Pareto Distribution ( GPD)  which is considered in the form of exponential and 
Pareto distribution in this research. The parameters estimations are composed by Pickands, Hill, Decker-Einmahl-de 
Haan and maximum likelihood estimate (MLE) . The retention limit or threshold u of claim severity is analyzed for 
model fitting in tail distributions. We applied the models to the Danish fire data and motor insurance claims of a Thai 
non-life insurance company.  We have found that the results of the exponential distribution is better fit than Pareto 
distribution for both Danish fire data and motor insurance claims with threshold u  of 8,733,100 Krone and  26,457 
Baht, respectively.  
 

บทคดัย่อ 
เหตุการณ์ต่าง ๆ ท่ีมีค่าสุดขีดจะจ าลองดว้ยทฤษฎีค่าสุดขีดโดยส่วนใหญ่ การจ าลองรูปแบบของค่าเกินเกณฑ์

จะใชรู้ปแบบของการแจกแจงพาเรโตวางนัยทัว่ไป ซ่ึงในงานวิจยัน้ีไดพิ้จารณารูปแบบของการแจกแจงเอกซ์โพเนน
เชียลและการแจกแจงพาเรโต การประมาณค่าพารามิเตอร์ประกอบดว้ย วิธีพิกคานด์ ฮิลล์ เดคเกอร์-อินมาล-เดอฮาน 
และวิธีภาวะน่าจะเป็นสูงสุด ไดว้ิเคราะห์ขีดจ ากดัความรับผิดหรือค่าเกณฑ์ u ของจ านวนค่าสินไหมทดแทน ส าหรับ
ความเหมาะสมสอดคลอ้งกบัรูปแบบท่ีหางของการแจกแจง ไดป้ระยกุตใ์ชรู้ปแบบจ าลองดงักล่าวกบัขอ้มูลไฟไหมข้อง
ประเทศเดนมาร์กและขอ้มูลค่าสินไหมทดแทนการประกนัภยัรถยนตข์องบริษทัประกนัวินาศภยัแห่งหน่ึงในประเทศ
ไทย ผลการศึกษาพบวา่ การแจกแจงเอกซ์โพเนนเชียลเป็นการแจกแจงท่ีมีความเหมาะสมกวา่การแจกแจงแบบพาเรโต 
ส าหรับทั้งสองขอ้มูลของขอ้มูลไฟไหมเ้ดนมาร์กและขอ้มูลค่าสินไหมทดแทนการประกนัภยัรถยนต์ ดว้ยค่าเกณฑ์ u 
เท่ากบั 8,733,100 โครน และ 26,457 บาท ตามล าดบั 
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Introduction 

The extreme value theory (EVT)  is mainly represented the modeling of extreme events and providing the 
model of tail distribution. The extreme events generate extreme value both minimum and maximum which deal with 
a low frequency of occurrence but consequently the high risk are arisen.  The popular methodologies of EVT for 
applying to financial and insurance risks are the block maxima ( minima)  ( BMM)  approach and the peak over 
threshold ( POT)  approach.  The BMM is based on the Generalized Extreme Value distribution ( GEV)  which is 
relevant to distributions of the Gumbel, Fréchet and Weibull distributions.  The POT is based on the Generalized 
Pareto Distribution (GPD)  which is considered the exceedances over a given threshold. The EVT is described in a 
book of Fisher and Tippett (1928), Coles (2001), Kluppelberg (2004), Beirlant at al. (2004) and Reiss at al. (2007).  

The risk of insurance means losses or claims which are defined as the economic losses. The insurer can take 
some part of insured’s losses regarding to a retention limit or a threshold 𝑢. The excess of 𝑢 is a responsibility of a 
reinsurer.  The losses over 𝑢 is an important data set and it is very useful for reinsurance work.  Since the extreme 
cases are limited for model fitting in a whole data, thus the modeling in tail of distribution is modeled by POT 
approach. The modeling by POT approach is presented by some papers. For example, Stephenson (2002) proposed 
the modeling of exceedances over a threshold by maximum likelihood estimation. Anna and Carl (2012) concerned 
about fitting the GPD to the data on exceedances of high thresholds and presented a tail index estimation by using 
Hill estimator. Stephaney (2011) proposed an adaptive version of the Hill estimator for parameter estimation and used 
Monte-Carlo simulations for model illustrations. Rydell (2013) and Vladimir O. at al (2012) presented value at risk 
(VaR) by POT method and solved the model fitting by GPD. Valeria and Matej (2012) presented POT method for 
modeling of tail distribution with the data of car insurance claims from a Slovak insurance company over the period 
1998-2008. 

Therefore, we are interested in POT approach for model fitting based on GPD of the claims which are over 
the threshold 𝑢.  The mean excess of loss is calculated for expected cost of claims which is very useful for 
determining of threshold 𝑢 and pricing in reinsurance.   
 

Objectives of the study 
The objectives of the research is are as follows: 

  1. To find the estimated parameters of GPD for actual data sets. 
  2. To find a threshold 𝑢 which is appropriate to the claims data. 

 
Materials and methods  

The distribution of GPD is used for modeling exceedances over a threshold 𝑢. Their parameters estimation 
and a statistical test for model fitting are described as follows.     
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        Models 
Let a basic losses data  𝑋 = 𝑋1, 𝑋2, … , 𝑋𝑛  be a random variables with independent and identically 

distributed (iid) functions 𝐹. We are interested in an estimation of the distribution function  𝐹𝑢 which contains some 
losses above a certain threshold 𝑢.  Let 𝑌 be a random variable which is the exceedance over 𝑢 such that  𝑌 = 𝑋 −
𝑢. The distribution of 𝑌 is defined as 

𝐹𝑌(𝑦) = 𝑃{𝑋 − 𝑢 ≤ 𝑦|𝑋 > 𝑢}    ;  𝑦 > 0 

𝐹𝑌(𝑦) =
𝐹𝑋(𝑦 + 𝑢) − 𝐹𝑋(𝑢)

1 − 𝐹𝑋(𝑢)
  =

𝐹𝑋(𝑥) − 𝐹𝑋(𝑢)

1 − 𝐹𝑋(𝑢)
 

 It is abbreviated as  𝐹𝑌(𝑦) =
𝐹(𝑥)−𝐹(𝑢)

1−𝐹(𝑢)
. 

The 𝐹𝑌 is called the distribution function of exceedances above threshold 𝑢. By the conditional probability, 
𝐹𝑢 can be written by 

𝐹𝑢(𝑥) =  {

𝐹(𝑥) − 𝐹(𝑢)

1 − 𝐹(𝑢)
     ;  𝑥 − 𝑢 > 0

       0                      ;    𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.

 

The probability density function 𝑓  is of the form     

               𝑓𝑢(𝑥) =
𝑓(𝑥)

1−𝐹(𝑢)
  ,  𝑥 − 𝑢 > 0. 

For 𝑢  large enough, the distribution of exceedances above  𝑢 is approximated by a GPD, i.e.,  
𝐹𝑢 ≈ 𝐺𝜉,𝛽(𝑦)  𝑎𝑠  𝑢 → ∞  or   𝑓𝑢 ≈ 𝑔𝜉,𝛽(𝑦) 𝑎𝑠   𝑢 → ∞, 

where 𝐺𝜉,𝛽(𝑦) is the GPD. 𝐹𝑢  and 𝑓𝑢 are the distribution function and The probability density function of the 
exceedances above 𝑢, respectively.  

The Generalized Pareto Distribution (GPD) is defined as follows:  

𝐺𝜉,𝛽(𝑦) =

{
 
 

 
 
1 − (1 + 𝜉

𝑦

𝛽
)

−1
𝜉
  , 𝑖𝑓 𝜉 ≠ 0 

 1 − exp (
−𝑦

𝛽
)    , 𝑖𝑓 𝜉 = 0,

 

         where  𝜉 ∈ ℝ  and 𝛽 > 0 are the parameters.  
In case of  𝜉 ≠ 0, the distribution is separated into 2 cases. That is, if  𝜉 ≥ 0, we require 0 ≤ 𝑦 < ∞ and if            
𝜉 < 0,  we require that 0 ≤ 𝑦 ≤ −𝛽

𝜉
 . The parameter 𝜉 is called an extreme value index (EVI). The parameter 𝛽 is 

called the scale parameter and it is depending on the threshold  𝑢, i.e.,  𝛽 =  𝛽(𝑢). 

The probability density function (PDF) of GPD is given by 

𝑔𝜉,𝛽 (𝑦) =  

{
 
 

 
 1

𝛽
(1 + 𝜉

𝑦

𝛽
)

−1
𝜉
−1

; if   𝜉 ≠ 0

1

𝛽
𝑒𝑥𝑝 (

−𝑦

𝛽
)          ; if    𝜉 = 0.

 

In our research, the limited distribution of GPD as shown above are considered for 2 distributions which are in 
case of  𝜉 = 0 and 𝜉 > 0 for exponential and Pareto distribution, respectively. The models of GPD are as follows.  
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The exponential distribution  
   The CDF and PDF are as follows; 

𝐺𝜉,𝛽 (𝑦) = 1 − 𝑒𝑥𝑝 (
−𝑦

𝛽
) 

𝑔𝜉,𝛽(𝑦) =  
1

𝛽
𝑒𝑥𝑝 (

−𝑦

𝛽
),  where  𝑦 > 0, 𝛽 > 0.  

 The Pareto distribution  
  The CDF and PDF are as follows; 

𝐺𝜉,𝛽 (𝑦) = 1 − (1 + 𝜉
𝑦

𝛽
)

−1
𝜉

 

𝑔𝜉,𝛽(𝑦) =  
1

𝛽
(1 + 𝜉

𝑦

𝛽
)

−1

𝜉
−1
, where  𝑦 > 0   and  𝜉, 𝛽 > 0.  

 
Parameters Estimation 

The estimated parameters are depending on the models. The 𝛽 is estimated by maximum likelihood 
estimate (MLE) for both the distributions of exponential and Pareto. For 𝜉, we have calculated based on the methods 
of Hill, Decker-Einmahl-de and Haan, Pickands and MLE. The estimated parameters are compared for model fitting. 

The parameters estimations are described as the following items:    
  Estimating the Shape Parameter 𝜉   
 There are 4 methodologies for estimating  𝜉. The estimated  𝜉  are compared for model fitting.  

Define the ordered statistics  𝑋𝑖:𝑛  as the information thi data for ni ,...,,2,1  which the data is 
ordered as  𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤ ⋯ ≤ 𝑋𝑛:𝑛 pertaining to the original iid random variables  𝑋1, 𝑋2, … , 𝑋𝑛. We derived 
it for 𝜉 ∈ ℝ. The estimated  𝜉 is calculated under the following estimators.    

(1) Hill Estimator  
               The estimated parameter is of the form 

𝜉𝑘,𝑛
𝐻   =   

1

k
∑ln (𝑦𝑛−𝑖+1:𝑛)

𝑘

𝑖=1

− 𝑙𝑛𝑦𝑛−𝑘:𝑛 ,  

 where  𝑘 𝜖 {1,2,3,… , 𝑛},  𝜉 > 0 and 𝑘 > 0. 
(2) Decker-Einmahl-de Haan Estimator   

          Let  𝜉 ∈ ℝ   the estimation of   𝜉  is given by 

𝜉𝐷 = 1 + 𝐻𝑛
(1)
+
1

2
(
(𝐻𝑛

(1)
)2

(𝐻𝑛
(2)
)
− 1)

−1

, 

  where  𝐻𝑛
(1)
= 𝜉𝑘,𝑛

𝐻    and   𝐻𝑛
(2)
=  

1

k
∑ (ln(𝑦𝑛−𝑖+1:𝑛)
𝑘
𝑖=1 − 𝑙𝑛𝑦𝑛−𝑘:𝑛)

2. 
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(3) Pickands Estimator  
               The parameter is estimated as  

𝜉𝑘,𝑛
𝑃 =

1

𝑙𝑛2
𝑙𝑛 (

𝑦
𝑛−⌈

𝑘
4
⌉+1:𝑛

−𝑦
𝑛−⌈

𝑘
2
⌉+1:𝑛

𝑦
𝑛−⌈

𝑘
2
⌉+1:𝑛

−𝑦𝑛−𝑘:𝑛
) ,    where 𝑘 = {1,2,… , 𝑛}. 

(4) The Maximum Likelihood Estimate (MLE) 
         The generic situation is that we observe n-dimensional iid random vector X with probability density 

function 𝑓(𝑥, 𝜃).  It is assumed that the parameter  𝜃 is a fixed, likelihood function of 𝜃 is defined as 

𝐿(𝜃) =  ∏𝑓(𝑥𝑖; 𝜃).

𝑛

𝑖=1

 

The log likelihood function is in the form of 

𝑙𝑛𝐿(𝜃) =  ∑𝑙𝑛𝑓(𝑥𝑖; 𝜃).

𝑛

𝑖=1

 

To maximize the natural log of  𝐿  by first partial derivative with respect to parameter 𝜃 is equal to zero, we 
obtain  

𝜕

𝜕𝜃
𝑙𝑛𝐿(𝜃) = 0. 

         We solved the equation as above for estimated parameter 𝜃 .  
 Estimation of Parameter 𝜷  
 The 𝛽 is estimated by MLE such that the description as below.      
  The exponential distribution  

   The PDF is in the form of  
𝑔(𝑦) =  

1

𝛽
𝑒𝑥𝑝 (

−𝑦

𝛽
),   whereas  𝛽 > 0 , 𝑦 > 0. 

The Likelihood function is the form of  

𝐿(𝛽) =∏𝑔(𝑦𝑖 , 𝛽)

𝑘

𝑖=1

  =  ∏
1

𝛽
𝑒𝑥𝑝 (

−𝑦𝑖
𝛽
)  

𝑘

𝑖=1

 

Take  𝑙𝑛, we get that 

𝑙𝑛 𝐿(𝛽)   =  𝑙𝑛∏
1

𝛽
𝑒𝑥𝑝 (

−𝑦𝑖
𝛽
)      

𝑘

𝑖=1

 =  ∑𝑙𝑛
1

𝛽
𝑒𝑥𝑝 (

−𝑦𝑖
𝛽
)  

𝑘

𝑖=1

 

 The maximization by first partial derivative with respect to parameters is equal to zero. They have been 
shown as below; 
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𝑑

𝑑𝛽
𝑙𝑛 𝐿(𝛽)  =

𝑑

𝑑𝛽
 ∑𝑙𝑛 (

1

𝛽
𝑒𝑥𝑝 (

−𝑦𝑖
𝛽
)  )

𝑘

𝑖=1

  

   =  
𝑑

𝑑𝛽
[∑ 𝑙𝑛

1

𝛽
+∑𝑒𝑥𝑝 (

−𝑦𝑖
𝛽
)    

𝑘

𝑖=1

𝑘

𝑖=1

] 

=  
𝑑

𝑑𝛽
[∑(𝑙𝑛1 − 𝑙𝑛𝛽) +∑

−𝑦𝑖
𝛽

𝑘

𝑖=1

𝑘

𝑖=1

] 

=  
𝑑

𝑑𝛽
[∑(𝑙𝑛1 − 𝑛𝑙𝑛𝛽) −∑

𝑦𝑖
𝛽

𝑘

𝑖=1

𝑘

𝑖=1

] 

= 0 −
𝑘

𝛽
+

1

𝛽2
∑ 𝑦𝑖
𝑘
𝑖=1 .                          

The estimation for the parameter  𝛽  can be obtained by solving the equation: 
𝑑

𝑑𝛽
𝐿(𝛽) = 0. 

We get 

1

𝛽2
∑𝑦𝑖 −

𝑘

𝛽
= 0     

𝑘

𝑖=1

   

  
1

𝛽2
∑𝑦𝑖 =

𝑘

𝛽

𝑘

𝑖=1

      

    
1

𝛽
∑𝑦𝑖 = 𝑘

𝑘

𝑖=1

 

              𝛽 =  
∑ 𝑦𝑖
𝑘
𝑖=1

𝑘
 . 

Therefore  𝛽̂ is an estimated parameter of  𝛽. That is  𝛽̂ = ∑ 𝑦𝑖
𝑘
𝑖=1

𝑘
 . 

   The Pareto distribution  
    The PDF is in the form of  

𝑔(𝑦) =  
1

𝛽
(1 + 𝜉

𝑦

𝛽
)

−1

𝜉
−1
,   whereas  𝛽 > 0 , 𝑦 > 0.  

The Likelihood function is in the form of  

 𝐿(𝜉, 𝛽) =  ∏
1

𝛽
(1 +

𝜉𝑦𝑖
𝛽
)

−1
𝜉
−1

.  

𝑘

𝑖=1

 

Take 𝑙𝑛, we obtain 

𝑙𝑛𝐿(𝜉, 𝛽) =  𝑙𝑛 ∏
1

𝛽
(1 +

𝜉𝑦𝑖
𝛽
)

−1
𝜉
 −1𝑘

𝑖=1

 

                                                          = ∑(𝑙𝑛1 − 𝑙𝑛𝛽)

𝑘

𝑖=1

+ ∑𝑙𝑛 (1 +
𝜉𝑦

𝛽
)

−1
𝜉
 −1

              

𝑘

𝑖=1

 

                                                    = ∑(𝑙𝑛1 − 𝑙𝑛𝛽) − (
1

𝜉
+ 1)∑𝑙𝑛 (1 +

𝜉𝑦𝑖
𝛽
)

𝑘

𝑖=1

 

𝑘

𝑖=1
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We get  

                   𝑙𝑛𝐿(𝜉, 𝛽)  = −𝑘(𝑙𝑛𝛽) − (1 +
1

𝜉
)∑𝑙𝑛 (1 +

𝜉𝑦𝑖
𝛽
)

𝑘

𝑖=1

 

The maximization by first partial derivative with respect to parameters is equal to zero. They have been shown as 

below; 

                             
𝜕

𝜕𝛽
𝐿(𝜉, 𝛽) =

𝜕

𝜕𝛽
(−𝑘𝑙𝑛𝛽) − (1 +

1

𝜉
)∑

𝜕

𝜕𝛽
𝑙𝑛 (1 +

𝜉𝑦𝑖
𝛽
)

𝑘

𝑖=1

 

                                      =  
−𝑘

𝛽
− (1 +

1

𝜉
)∑(

𝛽

𝛽 + 𝜉𝑦𝑖
) (−

𝜉𝑦𝑖
𝛽2
)

𝑘

𝑖=1

 

    = −
𝑘

𝛽
+ (

1

𝜉
+ 1)∑

𝜉𝑦𝑖
𝛽2 + 𝛽𝜉𝑦𝑖

.

𝑘

𝑖=1

 

We get that  

   
∂L(ξ, β)

∂𝛽
= −

𝑘

𝛽
+ (

1

𝜉
+ 1)∑

𝜉𝑦𝑖
𝛽2 + 𝛽𝜉𝑦𝑖

𝑘

𝑖=1

= 0.       

The Newton-Raphson is applied for solving equation to find estimated parameter  𝛽. 

Goodness of Fit Test    
The goodness of fit (GOF) tests measure the compatibility of a random sample with a theoretical probability 

distribution. We use Kolmogorov-Smirnov Test do decide if a sample come from a hypothesized continuous 
distribution. It is based on the empirical cumulative distribution function (ECDF). Assume that we have a random 
sample 𝑦1, 𝑦2, … , 𝑦𝑘     from some continuous distribution with CDF 𝐺(𝑦). The empirical CDF is denoted by 

𝐺𝑦
𝑘(𝑦) =

1

𝑘
[𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 ≤ 𝑦]. 

 The theoretical distribution 𝐺𝑦∗(𝑦) and the empirical distribution function 𝐺𝑦𝑘(𝑦). 
The K-S test statistic is defined by 

𝐷 = max
𝑦
|𝐺𝑦

𝑘 (𝑦) − 𝐺𝑦
∗(𝑦)| 

Plots for Threshold 
There are 3 criterions for discussion on plots for threshold 𝑢, such as mean excess plot, stability of Hill’s plot 

and stability of Pickands plot. The benefit of these are to be guideline for choosing of threshold 𝑢.  
(1)   Mean Excess Plot         
  The mean excess function, 𝑒(𝑢), or mean excess over the threshold value u is in the form of   

𝑒(𝑢) = 𝐸(𝑋 − 𝑢|𝑋 > 𝑢). 
Since   𝐹𝑢 ≈ 𝐺𝜉,𝛽  thus  𝑒(𝑢) is linear function of u. Then we obtain that 

𝑒(𝑢) = ∫
1 − 𝐹(𝑦)

1 − 𝐹(𝑢)

∞

𝑢

𝑑𝑦 =  
𝛽 + 𝜉𝑢

1 − 𝜉
, 

for  𝛽 + 𝜉𝑢 > 0, 𝜉 > 1. 
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The mean excess plot (ME plot) is a plotting technique which is plotted between GPD and threshold data. 
(2)   Stability of Hill’s Plot   

        The Hill’s plot is given by points [𝑘, 𝜉𝑘,𝑛 𝐻 ] where 𝜉𝑘,𝑛 𝐻  is the Hill estimation.   
(3)   Stability of Pickands Plot  

  The Pickands plot is done by points [𝑘, 𝜉𝑘,𝑛 𝑃 ] where 𝜉𝑘,𝑛 𝑃  is the Pickands estimation.  
 

Results  
The GPD are applied to the actual claims data sets which are composed by fire losses data and motor 

insurance claims data. Some results are explained as the following items.  
Actual Losses Data  

  Characteristics of Danish Fire Loss Data 

  The Danish data consist of 2,167 losses over one million Danish Krone ( DKK)  from the years 
1980 to 1990 inclusive. The loss is combined damage of buildings, personal property and loss of profits. The basic 
characteristic of data is show in Table 1. Figure 1 shows histogram of data. 
 Table 1 Basic characteristics of data 

Count 2,167 Min 1,000,000 

55 % Percentile 1,886,300 Max 152,413,200 

65 % Percentile 2,259,300 Mean 3,295,900 

75 % Percentile 3,021,600 Median 1,774,623 

85 % Percentile 4,612,000 Skewness 13.2420 

95 % Percentile 8,733,100 Kurtosis 264.6959 

 
 Characteristics of Motor Insurance Claims Data  

 The motor insurance claims data , in Thai Baht,  is a voluntary plan which contains 1,296 observations of 
non-life insurance company in Thailand the year 2009. Figure 2 shows histogram of data 
Table 2 Basic characteristics of data 
Count 1,296 Min 159 
55 % Percentile 8,353 Max 899,879 

65 % Percentile 10,789 Mean 17,662 

75 % Percentile 16,045 Median 7,296 

85 % Percentile 26,457 Skewness 10.6589 

95 % Percentile 66,455 Kurtosis 182.8183 
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Figure1 Histogram (log scale) of Danish Fire Data Figure 2 Histogram (log scale) Motor Insurance Claims 
 
 

Model Fitting Results 
The results are contain the D-value of K-S test and estimated parameters that are relied on the threshold 𝑢. The 

number of data, k, is reducing as 𝑢 increased.  The MLE is applied to models, Exponential distribution and Pareto 
distribution, for 𝛽̂. For pareto distribution, The 𝜉 is estimated by MLE and 3 methods of  𝜉 estimations. 

Danish Fire Data 
Table 3 shows the results model fitting and 𝑒(𝑢) which are relevant to truncated data based on percentiles. 

From Table 3, according to K-S test, for all threshold 𝑢, the models cannot be fitting to the data sets with a significant 
level at 0.05.   Mostly, D-value of exponential distribution are less than D-value of Pareto distribution which the least 
value is 0.1184. Pareto distribution, the D-value based on Hill’ s estimator, are the least. The 𝑒(𝑢) of exponential and 
Pareto distributions trends to be increased as increasing 𝑢.  At the least D-value at 95th percentile (𝑢 = 8,733,100) , the 
𝑒(𝑢)  is 12,429,000 Krone.  Figure 3 shows the D-value of models with respective to truncated percentiles. 
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Table 3 GPD fitting to Danish fire data 

 
Item 

Value 
Percentile 

55 65 85 90 95 
𝒖 1,886,300 2,259,300 3,021,600 5,920,300 8,733,100 
𝒌 975 758 542 217 108 

Exponential      
 𝛽̂ 3,736,000 4,383,500 5,232,400 8,433,900 12,429,000 
 D-value 0.1884 0.1908 0.1896 0.2212 0.1184 
 e(u) 3,736,000 4,383,500 5,232,400 8,433,900 12,429,000 
Pareto      
MLE 𝜉 0.6244 0.5370 0.6165 0.4431 0.3486 

𝛽̂ 1,594,900 2,116,700 2,948,700 4,718,600 8,016,900 
D-value 0.7975 0.8435 0.7995 0.8908 0.9343 
e(u) 7,382,000 7,192,200 15,102,000 13,184,000 16,980,000 

𝝃̂ estimations       

Hill’s 𝜉𝑘,𝑛
𝐻  0.7490 0.7582 0.6311 0.6564 0.6786 

𝛽̂ 1,478,000 1,864,100 2,919,200 4,180,600 6,690,700 
D-value 0.7360 0.7316 0.7919 0.7777 0.7631 
e(u) 11,520,000 14,792,000 18,805,000 23,477,000 39,261,000 

Decker  
de-Haan 

𝜉𝑘,𝑛
𝐷  0.6536 0.6097 0.5895 0.5043 0.4297 

𝛽̂ 1,565,200 2,022,200 3,005,200 4,538,500 7,602,000 
D-value 0.7826 0.8049 0.8136 0.8579 0.8937 
e(u) 8,076,500 8,711,500 13,942,000 15,181,000 19,910,000 

Pickands 𝜉𝑘,𝑛
𝑃  0.6394 0.5400 0.1040 1.1297 0.0999 

𝛽̂ 1,579,500 2,112,600 5,033,800 3,502,800 10,216,000 
D-value 0.7898 0.8419 0.9969 0.5834 0.9907 
e(u) 7,724,200 7,244,200 6,153,200 - 12,319,000 

 
Motor Insurance Claims 
Table 4 shows the results model fitting and 𝑒(𝑢) which are relevant to truncated data based on percentiles.  

From Table 4, according to K-S test, for all threshold 𝑢, the models cannot be fitting to the data sets with a significant 
level at 0.05. Mostly, D-value of exponential distribution are less than D-value of Pareto distribution. Pareto distribution, 
the D-value based on Hill’s estimator, are the least. The 𝑒(𝑢) of exponential and Pareto distributions trends to be  
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increased as increasing u. At the least D-value at 85th percentile (𝑢 = 33,852), the 𝑒(𝑢) is 47,510 Baht.  Figure 4 shows 
the D-value of models with respective to truncated percentile. 
Table 4 GPD fitting to Motor insurance claims 

 
Item 

Value 
Percentile 

55 65 85 90 95 
𝒖 8,353 10,789 26,457 36,648 66,455 
𝒌 583 454 194 130 65 

Exponential      
 𝛽̂ 25,944 30,570 47,510 58,512 75,589 
 D-value 0.1926 0.1783 0.1611 0.1408 0.1727 
 e(u) 25,944 30,570 47,510 58,512 75,589 
Pareto      
MLE 𝜉 0.6589 0.5514 0.5141 0.4241 0.4938 

𝛽̂ 10,722 14,713 24,747 34,495 41,263 
D-value 0.7792 0.8347 0.8522 0.8979 0.8529 

e(u) 47,566 46,057 78,911 86,881 146,360 

𝝃̂ estimations      

Hill’s 𝜉𝑘,𝑛
𝐻  0.9618 0.9454 0.7480 0.7287 0.5774 

𝛽̂ 9,025 11,979 21,483 28,903 38,974 
D-value 0.6450 0.6506 0.7329 0.7393 0.8081 

e(u) 447,750 406,100 163,780 204,950 183,040 
Decker  
de-Haan 

𝜉𝑘,𝑛
𝐷  0.7584 0.6808 0.8535 0.4970 0.4959 

𝛽̂ 10,084 13,608 23,631 32,846 41,201 
D-value 0.7310 0.7676 0.8151 0.8588 0.8518 

e(u) 67,947 65,649 93,788 101,500 147,120 
Pickands 𝜉𝑘,𝑛

𝑃  0.5975 0.5504 0.4227 0.1638 0.6770 

𝛽̂ 11,175 14,723 26,481 43,807 36,665 
D-value 0.8108 0.8353 0.9012 0.9901 0.7570 

e(u) 40,170 45,954 65,249 59,569 252,700 
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Figure 3 D-value of models based on Danish Fire Data           Figure 4  D-value of models based on Motor Insurance Claim

Plots of Threshold  
There are 𝑒(𝑢) plot, Hill’s plot and Pickand’s Plot which are the following figure as below.   
(1)  Danish Fire Data 
       Figure 5 shows the plot of 𝜉and 𝑘. The curve of trend to be straight line when increased.  

As at  𝑘 = 1,083 with  𝑢 = 1,774,623 , the  value for all methods are not much difference, i.e., the value 𝜉  of  Hill, 
Decker Einmahl-de Haan, Pickands Estimators and MLE are 0.7490, 0.6734, 0.7674  and  0.6883  respectively. 

Figure 6 shows the plot of mean excess of loss and the threshold. The  𝑒(𝑢) of all estimation method provided nearly the 
same value at the threshold  𝑢 = 3,246,200.   

 
Figure 5 The plot of 𝑘 and  𝜉̂                                                 Figure 6 The plot of 𝑢 and  𝑒(𝑢) 

(2)  Motor Insurance Claims 
 Figure 7 shows the plot of 𝑘 and  𝜉 . The curve of 𝜉 ̂trend to be straight line when 𝑘 increased.  
 Figure 8 shows the plot of mean excess of loss and the threshold 𝑢 plot based on Motor Insurance Claims. The  

𝑒(𝑢) of all estimation method provided nearly the same value at the threshold  𝑢 = 39,986.  
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Figure 7 The plot of 𝑘 and  𝜉̂.      Figure 8 The plot of 𝑢 and  𝑒(𝑢) 

 
Discussion and Conclusions 

The model of exponential distribution is the better fit to Danish fire data and motor insurance data sets with 
threshold 𝑢 are 8,733,100 Krone and 26,457 Baht, respectively.  

In this research is pending for analysis of choosing the threshold 𝑢 which is made optimal of models. It will 
be continued for further research.  Other models that provide more parameters are interesting for study such as the 
models for 4 and 5 parameters are Kappa Distribution and Wake Distribution, respectively.   
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