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Strong Convergence of a New Iteration for Fixed Point Problems of a Finite Family of
Nonexpansive Mappings and Equilibrium Problems
o :’ o v do o
msgrivasnszuIumsingwuulniawsuiymganssvessadinavesmsawuyluvens

nazeyringgasnn

an

. .. a . a Jd I o
Keerati Siriyan (ﬁm ATTYIU)* Dr.Atid Kangtanyakarn (23.91M08 LUITYNI1T)**

ABSTRACT
In this paper, we establish a new iterative method for fixed point problem of a finite family of nonexpansive

mappings and the equilibrium problem. Then, we prove a strong convergence theorem for finding the common

element of these problems.
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Introduction

Throughout this paper, we always assume that H is a real Hilbert space. Let C bea nonempty closed
convex subset of H . Let — and — denote strong and weak convergence, respectively. Let Pc be the metric

projection of H onto C. i.e. for x e H, PC X satisfies the property
x—P XH: min ||X—Y|| -
berer = gl
PC is a nonexpansive mapping of H onto C and satisfies

<X_y’PCX_PCy>ZHPCX_PCyH2'

The set of fixed point of a mapping S : C — C is denoted by F(S), thatis, F(S)={xe C:Sx = x}.
Goebel and Kirk [5] showed that F(S) is always closed convex, and also nonempty provided S has a bounded

trajectory. Recall that S is said to be nonexpansive mapping if ”SX - Sy|| < ”X - y|| forall X,y € H.

Let F:CxC — R be a bifunction. The equilibrium problem for F isto find X € C such that

F(x,y)zo, vy eC. (1.1

The set of the of (1.1) is denoted by EP(F). In 2005, Combettes and Hirstoaga [4] introduced an iterative scheme of
finding the best approximation to the initial data when EP(F) is nonempty and proved a strong convergence

theorem.

In 2007, Takahashi and Takahashi [8] introduced viscosity approximation method in framework of a real

Hilbert space H. They defined the iterative sequence {Xn} and {Un} as follows:

X| € H,
1

F(un,y)+—<y—un,un—xn>20, vyeC, (1.2)
0

where f:H — H is a contraction mapping with constant ¢ € (0,1) and {a} < [0,1],{ry} < (0,00). They
proved under some suitable conditions on the sequences {ap},{l;} and the bifunction F that {Xn},{up} strongly

converges to Z € F(T)(NEP(F), where Z = PF(T)ﬂEP(F) f(2).

Inspired by Takahashi and Takahashi [8], we introduced an iterative method and proved a strong
convergence theorem for finding the solution of fixed point problems of a finite family of nonexpansive mappings

and modified equilibrium problem under some suitable conditions.
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Objective of the study
The purpose of this research was to introduce a new iterative scheme for fixed point and equilibrium

problems and proof a new strong convergence theorems of a finite family of nonexpansive mappings in Hilbert space.

Preliminaries
In this section, we give some useful lemmas and definitions that will be needed for our main result.
Lemma 2.1 [9] Let {Sn } be a sequence of nonnegative real numbers satisfying
Sqyp SU—ap)spn+fp, ¥Vn=0

where {an} and { Pn } satisfy conditions
o0
1) {an} c (0,1), ngl ap = o,
2) 1imsupﬂ—n <0 or §1|ﬁn| < o0,
n=

n—oo an

Then lim sp =0.
N—oo

Lemma 2.2 [3] Let E be a uniformly convex Banach space, C be nonempty closed convex subset of E and

S : C — C be a nonexpansive mapping. Then | — S is demi-closed at zero.

For solving the equilibrium problem for a bifunction F :CxC — R, let us assume that F satisfies the

following conditions:
(Al) F(x,x)=0 vxeC;
(AZ) F is monotone, i.e, F(X,y¥)+ F(y,X) <0, VX, yeC;

(A3) Wx,y,zeC, lim F(tz+(1-t)X y) < F(XYy)
t—07"
(A3) VxeC,ym F(X,y) is convex and lower semicontinuous.

Lemma 2.3 [1] Let C be a nonempty closed convex subset of H and let F be a bifunction of C xC into R

satisfying (A1) - (A4). Let I > 0 and x € H. Then, there exists Z € C such that
1
F(z,y)+—<y—z,z—x>, 2.1
r

forall X e C.
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Lemma 2.4 [4] Let C be a nonempty closed convex subset of H. Assume that F : C xC — R satisfies (A1)-(A4).

For I >0 and X € H, define a mapping Jr :H — C as follows:
1
Jr(x) = ZGC:F(z,y)+—<y—z,z—x>20, VYyeCy, 2.2)
r

forall z € H . Then, the following hold:

(1) Jy is single — valued;

2
(2) Iy is firmly nonexpansive i.e. [Jp (%)= Ir (N[~ < (I ()= Ip(y).x-y) VxyeH;
®) F(r)=EP(F);

(4) EP(F) is closed and convex.

Lemma 2.5 [7]Let C,H,F and J(x) be as in Lemma 2.4. Then the following holds:
2 Ss—t
||Jsx - th|| < T<JSX - J X, X - x>
forall S,t >0 and x € H.

Definition 2.1 [6] Let C bea nonempty closed convex subset of a real Banach space. Let {Ti } be a finite

i=1

family of nonexpanxive mappings of C into itself. For each j =1,2,...,N, let aj= (alj , azj , ai ) elxIxl

where | =[0,1] and ,alj + a2J + a_,)J =1. We define the mapping S : C — C as follow:

1 1 1
U1 = a1T1U0+a2U0+a3I

2 2 2
U2 = a1T2U1+a2U1+a3I

3 3 3
U3 = o T1U2 +a2U2 +a3l

N1 N1 N1
Unor= 9 TnoUnp tap Unyptag

N N N
S =Uy= o TW\UngtaUngtas L

This mapping is called the S - mapping generated by T, ""TN and a0y ses A -
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N
Lemma 2.6 [6] Let C bea nonempty closed convex subset of a strictly convex. Let {Ti }i—l be a finite family of

nonexpanxive mappings of C into itself with F = nil\il F(T) = & and let aj = ( 1J , azj ,053] ) elxlxl,

j=12,3,..,N, where | =[0,1] ,alj +a2J +a3j =1, aJ e(O,l) forall j=1,2,..,N—1, alN 6(0,1],
alN ,alN € [0,1) forall j=1,2,...,N. Let S be the mapping generated by Tl""’TN and Qs Qy s A -
Then F(S) = NN, F(Ty).

Lemma 2.7 [2] Let C bea nonempty closed convex subset of a Banach space E . Let F be a bifunction from
C xC — R satisfying (A1)-(A4). Suppose that P € C. Then p € EP(F). ifand only if F(y, p) <0 for all
yeC.

Main result

Theorem 3.1 Let C be a nonempty closed convex subset of a Hilbert space H. Let F be a bifunctions from C xC

N
into R satisfying (Al) - (A4 ). Let {Ti }i:I be a finite family of nonexpanxive mappings of C into itself with

J

I =[0,1] ,alj -+-052J +0t3j =1, aJ 6(0,1) forall j=1,2,..,N—1, alN e(O,l] alN,alN 6[0,1) for all

j=12,..,N. Let S be the mapping generated by Tl""’TN and ay, 0y s A - Let {Xn} be a sequence

%'Zﬂi’ilF(Ti)ﬂ EP(F) # & and let « ; z(alj,azj,ajl)e IxIxl, j=1,2,3,.. N, where

generated by XU € C:

1
F(un,y)+—<y—un,un —(ﬁnan +(1—/J’n)xn)>20, vyeC,
n (3.1

Xn41 = anu+d—ap)up, Vnx1,

where {an},{ﬂn} IS (0,1) such that 1y € (a,b) and By € (C,d] c (0,1].

Assume that
oS

(i) nli_r>nooozn =0 and nEOan = oo,

. o0 o0 o0
(ih) nél‘rnﬂ - rn‘ El “n+l _an"nél‘ﬂnﬂ _ﬁn‘ <

n=

Then the sequence {Xn} converges strongly to Z = P U.

S
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Proof. We divide our proof into 5 steps.

Step 1. We show that { Xn} is bounded.

Let Z € §, since F(un,y)+i<y—un,un—(ﬁn8xn+(1—ﬁn)xn)>20, vy eC, (3.2)
n

by Lemma 2.4, it implies that Uy = Jrn (ﬂnTXn +(l—ﬂn)xn)and zeFQ n ).
Then, we have
Hxn+1 - ZH < ap Ju -2+ - ap)jus -7
=an ||U_Z||+(1_an)HJrn (ﬂnan +(1—ﬂn)xn)—ZH
<ap ||u - z||+(1—an)H(ﬁnan +(1—ﬁn)xn)— ZH
< anlu= el 1-an) (5[50~ 2+ ) i )
< o Ju—2]|+ (1= an) (B xn 2]+ (1= 50 on - 2)

= ap Ju—z]+ 1~ an)|x -]

< max {[lu 2] [xn -]} 6.3

By induction, we can conclude that {Xn } is bounded and so are {an} and {un} .

Step 2. We show that lim [[x,,; —Xp|| = 0.
N—o0

Put yp = BnSXn +(1— Bp)Xp, forall NeN.
We see that

Hxn+1 - an = Hanu +(1-apup - ap_ju- (I- “n—l)un—lu
- Hanu F(—an)up —(-ap)ty | +(A-apu, | —a, u-( —an_l)un_IH
= H(an —a_Pu+(—ap)uy —u,_p+(ap -4 )un—IH

< ‘“n ~ ‘ lufl+ 1= an) H“n - un—l” + ‘“n - an—l‘”“n—l”' (3.4)
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Since U, = J"n Yoo U = er Y,_; and from Lemma 2.5, we obtain

o, —u, [ @—nj<n bt = y,)

n

L [
n
ttimplies that U, —u, || <1~ rnr_l Ju, =y (312
:
By (3.12), we have
Jon =t < m = 1= m =l

=[Bn S + (1= )X = By ¥y + (= By )%

r_
1=~ lun = v
rn
_ H,BnSXn F (U= By = (= By + (L= B)X | =B 1% = BaSXy_q + BnSX_y

+(1 _'Bn—l)xn—lu +|1

= ol
B L O N N

"

n-1
— ””n - yn”
n

< ”Xn - Xn—1||+|ﬂn _ﬂn—1|||xn—1||+|ﬂn—l _ﬂn|”SXn—1”+

+1-

r
1- :.: ”un - yn”

1
< ”Xn - Xn—1||+2M |18n—1 _ﬁn|+g|rn - r-n—1| M, (3.13)

where M = max e {[xn][- 8% |- Jun = v}
Substitute (3.13) into (3.4)
[t = %] < Jrn = et} (1= n)jun =y |+ ey = |
<fen o +(1-a0) i =5+ 20 L -1
“Jen = o

1
< ‘an —an_1‘||u||+(1—an)uxn —xn_1H+2M ‘ﬁn—l —ﬂn‘+g‘rn - rn—l‘ M

tn =t o | 619
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This together with the conditions (i), (il) and Lemma 2.1, gives

im %1~ %= 0. 3.15)
Step 3. We show that nli_)mOO”SXn - Xn” =0. (3.16)
Since Y = fnSxn + (1= Bn)¥n, wehave Sy (Sxn —Xn) = Yn = Xp- (3.17)
Claim that nli_r)noOHXn_i_1 - ynH =0. (3.18)
Since |[Xy, = Yol € @ Ju= Yo+ (1=, )||u, = Val. (3.19)

For Z € EP(F)(N F(S), by firmly nonexpansiveness, we have

2 2
bl <[y 3]
s(un -2,¥p —z>
1 2 2 2
= 2(”“” - Z” +||yn - Z” _”“n - yn” ) (3.20)
2 2 2
From (3.20), we have lun =" <|lvn =7 ~[lun = val " (3.21)

By definition of { Xn } and (3.21), we have

2 2
H I-ap ||un - z||

(Ivn -2l ~lon =30l
|

2
Vi ‘Z” ~(1=an)Jun = vall

2
-2 <anfu-7]
Hxn+1 7| <aplu-z|| +

2
San”u—Z” +(1-ap

2
< anlu=2" +(1-an) (0= ) o =" + Aot I )~ (1=n)on - vl

(1-an)
(1-an)

- anfu=2f +(1-an)
(1-an)

(1-an)

2
San”u—z” +(1-ap ||xn—z|| —(1—an)||un—yn|| ,

it follows that
2 2 2 2
(1=an)lun = vall” < anfu—2|" +[xq - 2| +Hxn+1 - ZH

2
< a2 + (o Pt - )Pt |-
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B dition (i) and (3.15), we h lim |uq —Ynl[=0. 322
y condition (1) and (3.15), we have n—>oo|| n yn” (3.22)

By (3.22), condition (i) and (3.19), we obtain (3.18). Again by (3.18) and (3.15), we have
lim —Xn|l = 0. 3.23
s [vn =] (3.23)

By (3.23),(3.17) and S, € (C, d], we have nlll)nw”SXn - Xn” =0.

Step 4. We show that

li <u—z ,Xp —Z >s0 3.24
nE)noo 0°7n =0 (3.24)

where 7, € § . Indeed, we pick a subsequence {Xnk } of {Xn} such that

nhgrlwsup<u—zo,xn —zo>=kli_r)noo<u—20,xnk —zo>. (3.29)

Without loss of generality, we can assume that Xnk — @ as K — o0 . Since C is closed and convex, C is weakly

closed. So, we obtain @ € C.

First, we show that @ € EP(F). By (3.23), we have ynk — @ as K = o0 . Since as u, = Jr Yos

forall y € C, we have

1
F(Un,y)+r<y—un,un—yn>20, vyec
n
From (A2), we have
1
7<y—un,un—yn>zF(y,un), vy eC.
n
In particular, we have
Unk - ynk
y-Un . —— ZF(y,unk), vy e C. (3.26)
rnk

By (3.22)and Y, — @ as K — o0, we have U, = as K — 00. Again by (3.22), (3.26) and u, =~ o

as k—)w,wehave

F(y,w)<0, vy e C. (3.27)
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From Lemma 2.7 and (3.27), we have @ € EP(F).

By Xnk — @as K —00,(3.16) and Lemma 2.3, we have @ € F(S). Thus @ € §.

By (3.25), we obtain

nli—)moosup<u ~Z9-%n Zo> = n“_r>noo<“ ~20:%n, —Zo>

:<u—zo,a)—zo>

<0.

Step 5. Finally, we show that X, — Z, as N — 00, where Z, = P&U.

By nonexpansiveness of S and J . »we have
n

ot = 2] =t -20)+ (1-an)tn -2

( an 2HUn_ZQH +2“n< Z0’Xn+1_20>
of

l1-ap HJrnyn +2ap <U_ZO’Xn+1_ZO>

)
)
1= “n)Hyn—zOH +2am (U= 20,50, - 2)
e n(®n 290+ (1-n) 30~ 20)| +260 (42075001 ~20)
)

<(

<(

=(
2 2

<(-an) sulsra-aal] +- )l zo[] ) 20m (4= 205001 20)

g(l—an)Hxn - ZOH2 +2ap <u =20 X041 ~ ZO>'

From step 4, condition (i) and Lemma 2.1, we can conclude {Xn} converges strongly to Z() = PSU'

This completes the proof.

Conclusion
Theorem 3.1 tells us that the sequence {Xn} , generated by the iterative (3.1), converges strongly to

Z= Pgu. Moreover, this point is a common solution of fixed point problem of a finite family of nonexpansive

mappings and the equilibrium problem. Therefore, we can apply theorem 3.1 to solve the problem that accordance

with the conditions of this theorem.
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